# Traffa

**UnilineSystem C55** 





Innovative Antriebslösungen

Der optimale Antrieb individuell für Ihre Anforderung

## UNILINE C Serie /

### Beschreibung UNILINE C Serie



Abb. 23

Uniline ist die Produktfamilie einbaufertiger Linearachsen. Diese bestehen aus innenliegenden Compact Rail-Laufrollenführungen und stahlverstärkten Polyurethan-Zahnriemen im biegesteifen Aluminiumprofil. Längsdichtungen schließen das System ab. Mit dieser Anordnung ist die Achse bestmöglich vor Schmutz und Beschädigung geschützt. Bei der Baureihe C sind die Festlagerschiene (T-Schiene) und die Loslagerschiene (U-Schiene) stehend in das Aluprofil montiert. Versionen mit langem (L) oder doppeltem (D) Läufer in einer Achse sind möglich.

#### Die wichtigsten Merkmale:

- Kompakte Bauweise
- Geschützte innenliegende Führungen
- Hohe Verfahrgeschwindigkeiten
- Fettfreier Betrieb möglich (abhängig vom Anwendungsfall. Für weitere Informationen wenden Sie sich bitte an unsere Anwendungstechnik.)
- Hohe Vielseitigkeit
- Lange Verfahrwege
- Versionen mit langem oder mehreren Läufern in einer Linearachse verfügbar

#### Bevorzugte Einsatzgebiete:

- Handling und Automation
- Mehrachsportale
- Verpackungsmaschinen
- Schneidmaschinen
- Verschiebbare Paneele
- Lackieranlagen
- Schweißroboter
- Sondermaschinen

#### Leistungsmerkmale:

- Verfügbare Baugrößen:
  - Typ C: 55, 75
- Längen- und Hubtoleranz:

  Bei Hüben <1 m: +0 mm bis +10 mm (+0 in bis 0,4 in)

  Bei Hüben >1 m: +0 mm bis +15 mm (+0 in bis 0,59 in)

## Aufbau des Systems

#### Aluminiumprofil

Die selbstragenden Profile, die in den Lineareinheiten der UNILINE C Serie eingesetzt werden, wurden in Zusammenarbeit mit einem Hersteller dieses Sektors konzipiert und konstruiert, sodass eloxierte Präzisions-Strangpressprofile mit hohen mechanischen Eigenschaften und hohen-Flächenträgheitsmomenten realisiert werden konnten. Das verwendete Material besteht aus eloxiertem Aluminium aus einer Legierung 6060. Die Abmessungen sind entsprechend EN 755-9 toleriert. An den Außenseiten der Strangpressprofile befinden sich des weiteren Nuten für eine einfache und schnelle Montage und zur Befestigung von Zubehörteilen.

Die Kombination mit Nullspiel-Zahnriemenscheiben ermöglicht so Wechselbelastungen ohne Umkehrspiel. Durch Ausnutzung der durch das Profil vorgegebenen maximalen Zahnriemenbreite und Einstellung einer optimalen Vorspannung des Riemens können die folgenden Eigenschaften erreicht werden:

- Hohe Verfahrgeschwindigkeiten
- Geringe Geräuschentwicklung
- Niedriger Verschleiß

#### Antriebsriemen

In den Lineareinheiten der UNILINE C Serie werden stahlverstärkte Zahnriemen aus Polyurethan mit RPP-Zahnprofil eingesetzt. Dieser Zahnriementyp hat sich in bezug auf zulässige Antriebsmomente, Kompaktheit und Geräuschentwicklung als der zweckmäßigste für die Antriebsübertragung in Lineareinheiten erwiesen.

#### Laufwagen

Der Laufwagen der Lineareinheiten der UNILINE C Serie besteht aus eloxiertem Aluminium. Jede Läuferplatte verfügt zur Montage der Komponenten über T-Nutenschlitze

Um der Vielzahl von Anwendungen Rechnung zu tragen bietet Rollon eine große Anzahl an verschiedenen Laufwagentypen an.

#### Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

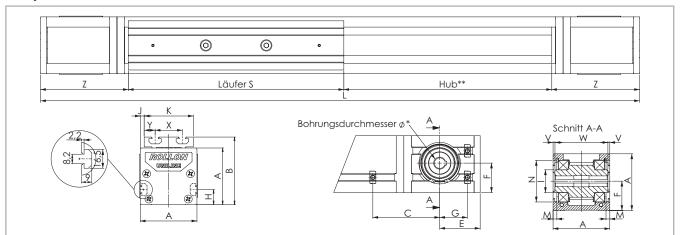
| Al   | Mg        | Si        | Fe   | Mn   | Zn   | Cu   | Verunreinigungen |
|------|-----------|-----------|------|------|------|------|------------------|
| Rest | 0,35-0,60 | 0,30-0,60 | 0,30 | 0,10 | 0,10 | 0,10 | 0,05-0,15        |

Tab. 30

#### Physikalische Eigenschaften

| Dichte          | Elastizitäts-<br>modul | Wärmeausdehnungs-<br>koeffizient (20°-100°C) | Wärmeleitfähigkeit<br>(20°C) | Spezifische<br>Wärme (0°-<br>100°C) | Spez.<br>Widerstand      | Schmelz-<br>temperatur |
|-----------------|------------------------|----------------------------------------------|------------------------------|-------------------------------------|--------------------------|------------------------|
| kg              | kN                     | 10-6                                         | W                            | J                                   | 0 100                    | 00                     |
| dm <sup>3</sup> | mm <sup>2</sup>        | K                                            | m . K                        | kg . K                              | Ω . m . 10 <sup>-9</sup> | °C                     |
| 2,7             | 69                     | 23                                           | 200                          | 880-900                             | 33                       | 600-655                |

Tab. 31


#### Mechanische Eigenschaften

| Rm            | Rp (02)       | А  | НВ    |
|---------------|---------------|----|-------|
| N<br>—<br>mm² | N<br>—<br>mm² | %  | _     |
| 205           | 165           | 10 | 60-80 |

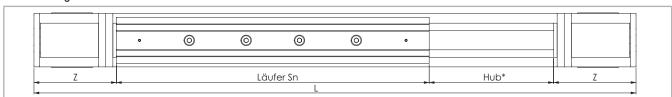
Tab. 32

#### **C55**

#### C55 System



<sup>\*</sup> Informationen zu den Motoranschlussbohrungen siehe Bestellschlüssel. \*\* Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.


Abb. 24

| Тур | A<br>[mm] | B<br>[mm] | C*<br>[mm] | E<br>[mm] | F<br>[mm] | G*<br>[mm] | H<br>[mm] | l<br>[mm] | J<br>[mm] | K<br>[mm] | M<br>[mm] | N<br>[mm] | S<br>[mm] | X<br>[mm] | Y<br>[mm] | V<br>[mm] | W<br>[mm] | Z<br>[mm] | Hub**<br>[mm] |
|-----|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|
| C55 | 55        | 71        | 67,5       | 50,5      | 27,5      | 32,5       | 15        | Ø 24,9    | 1,5       | 52        | 2,35      | Ø 47      | 200       | 28        | 12        | 0,5       | 54        | 108       | 1850          |

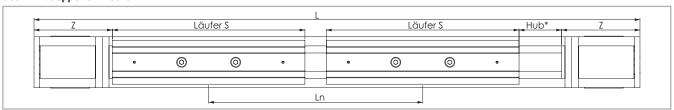
<sup>\*</sup> Position der Nutensteine bei Verwendung unserer Motoradapterplatten s. S. US-23ff

#### Tab. 33

#### C55L mit langem Läufer



<sup>\*</sup> Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.


Abb. 25

| Тур  | S <sub>min</sub> | S <sub>max</sub> | Sn                          | Z    | Hub* |
|------|------------------|------------------|-----------------------------|------|------|
|      | [mm]             | [mm]             | [mm]                        | [mm] | [mm] |
| C55L | 310              | 500              | $Sn = S_{min} + n \cdot 10$ | 108  | 1550 |

 $<sup>^{\</sup>star}$  Maximaler Hub mit einer Führungsschiene aus einem Stück und maximaler Läuferplattenlänge S $_{\rm max}$  Für längere Hübe s. tab. 38

Tab. 34

#### C55D mit doppeltem Läufer

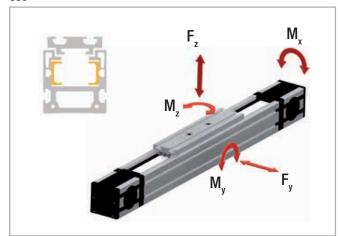


<sup>\*</sup> Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

Abb. 26

| Тур  | S    | L <sub>min</sub> | L <sub>max</sub> ** | Ln                          | Z    | Hub* |
|------|------|------------------|---------------------|-----------------------------|------|------|
|      | [mm] | [mm]             | [mm]                | [mm]                        | [mm] | [mm] |
| C55D | 200  | 300              | 1850                | $Ln = L_{\min} + n \cdot 5$ | 108  | 1570 |

 $<sup>^{\</sup>star}$  Maximaler Hub mit einer Führungsschiene aus einem Stück und Mindestabstand L $_{\min}$  der Läuferplatten


 $<sup>^{\</sup>star\star}$  Maximaler Hub mit einer Führungsschiene aus einem Stück. Für längere Hübe s. tab. 38

 $<sup>^{\</sup>star\star}$  Maximaler Mittenabstand Lmax der Läuferplatten mit Hub = 0 mm

Für längere Hübe s. tab. 38

## Tragzahlen, Momente und Kenndaten

#### C55



#### Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

| Тур | Riementyp | Riemenbreite<br>[mm] | Gewicht<br>[kg/m] |
|-----|-----------|----------------------|-------------------|
| C55 | 18RPP5    | 18                   | 0,074             |

Tab. 36

Riemenlänge (mm) =  $2 \times L - 182$  Standard Läufer Riemenlänge (mm) =  $2 \times L - S_n + 18$  Langer Läufer Riemenlänge (mm) =  $2 \times L - L_n - 182$  Doppelter Läufer

Abb. 27

| Тур   | C<br>[N] | F <sub>y</sub><br>[N] | F <sub>z</sub><br>[N] | M <sub>x</sub><br>[Nm] | M <sub>y</sub><br>[Nm] | M <sub>z</sub><br>[Nm] |
|-------|----------|-----------------------|-----------------------|------------------------|------------------------|------------------------|
| C55   | 560      | 300                   | 1640                  | 18,5                   | 65,6                   | 11,7                   |
| C55-L | 1120     | 600                   | 3280                  | 37                     | 213 bis 525            | 39 bis 96              |
| C55-D | 1120     | 600                   | 3280                  | 37                     | 492 bis 3034           | 90 bis 555             |

Beachten Sie für die Berechnung der zulässigen Momente die Seiten SL-5ff

Tab. 37

| Kenndaten                                      | Тур                |  |  |  |
|------------------------------------------------|--------------------|--|--|--|
|                                                | C55                |  |  |  |
| Standard-Riemenspannung [N]                    | 220                |  |  |  |
| Leermoment [Nm]                                | 0,3                |  |  |  |
| Max. Verfahrgeschwindigkeit [m/s]              | 3                  |  |  |  |
| Max. Beschleunigung [m/s²]                     | 10                 |  |  |  |
| Wiederholgenauigkeit [mm]                      | 0,1                |  |  |  |
| Compact Rail Tragschiene                       | TLV18 / ULV18      |  |  |  |
| Läufertyp                                      | 2 CS18 spez.       |  |  |  |
| Trägheitsmoment ly [cm4]                       | 34,4               |  |  |  |
| Trägheitsmoment Iz [cm <sup>4</sup> ]          | 45,5               |  |  |  |
| Teilkreis der Zahnriemenscheibe [m]            | 0,04138            |  |  |  |
| Trägheitsmoment jeder Zahnriemenscheibe [gmm²] | 45633              |  |  |  |
| Hub je Umdrehung der Welle [mm]                | 130                |  |  |  |
| Läufermasse [g]                                | 549                |  |  |  |
| Gewicht mit Nullhub [g]                        | 2971               |  |  |  |
| Gewicht mit 1 m Hub [g]                        | 4605               |  |  |  |
| Max. Hub [mm]                                  | 5500               |  |  |  |
| Betriebstemperatur                             | -20 °C bis + 80 °C |  |  |  |

Tab. 38

#### Schmierung

Die Laufbahnen der Führungsschienen in den Uniline-Linearachsen sind vorgefettet. Um die berechnete Lebensdauer zu erreichen, muss immer ein Schmierfilm zwischen Laufbahn und Rolle vorhanden sein, der außerdem einen Korrosionsschutz der geschliffenen Laufbahnen darstellt. Als Richtwert kann von einer Schmierfrist alle 100 km oder alle sechs Monate ausgegangen werden. Als Schmiermittel empfehlen wir ein Wälzlagerfett auf Lithiumbasis mittlerer Konsistenz.

#### Schmierung der Laufbahnen

Die ordnungsgemäße Schmierung bei normalen Bedingungen:

- reduziert die Reibung
- reduziert den Verschleiß
- reduziert die Belastung der Kontaktflächen
- reduziert die Laufgeräusche

| Schmiermittel | Verdickungsmittel | Temperaturbereich<br>[°C] | Dynamische Viskosität<br>[mPas] |
|---------------|-------------------|---------------------------|---------------------------------|
| Wälzlagerfett | Lithiumseife      | -30 bis +170              | <4500                           |

Tab. 45

#### Nachschmierung der Führungsschienen

- 1. Schieben Sie die Läuferplatte an eine Seite
- Drücken Sie den Zahnriemen in Höhe des halben Verfahrweges etwas ein, damit Sie die innenliegenden Schienen sehen können (s. Abb. 32).
   Evtl. ist die Riemenspannung zu lösen oder zu lockern. Siehe hierzu Kapitel Riemenspannung (s. S. US-59).
- 3. Tragen Sie eine ausreichende Menge Fett auf die Laufflächen auf.
- 4. Stellen Sie falls notwendig die empfohlene Riemenspannung wieder her (s. S US-59).
- Schieben Sie anschließend die Läuferplatte über den ganzen Verfahrwegvor und zurück, um das Schmierfett über die komplette Schienenlänge zu verteilen.



Abb. 32

#### Reinigung der Führungsschienen

Es ist immer zu empfehlen, die Laufschienen vor jeder Nachschmierung zu säubern, um Fettreste zu entfernen. Dies kann bei Wartungsarbeiten an der Anlage oder bei einem geplanten Maschinenstopp, erfolgen.

- 1. Lösen Sie die Sicherungsschrauben C (oben auf der Läuferplatte) von der Riemenspannvorrichtung A (s. Abb. 33).
- 2. Lösen Sie auch komplett die Riemenspannschrauben B und nehmen Sie die Riemenspannvorrichtungen A aus ihren Gehäusen.
- 3. Heben Sie den Zahnriemen soweit an, dass die Laufschienen zu sehen sind
  - Wichtig: Achten Sie darauf, dass die Sie die Seitenabdichtung nicht beschädigen.
- 4. Säubern Sie die Schienenlaufbahnen mit einem sauberen und trockenen Lappen. Achten Sie darauf, dass alle Fett- und Schmutzreste von vorhergehenden Arbeitsprozessen entfernt werden. Damit die Schienen über die ganze Länge gesäubert werden, sollten Sie die

Läuferplatte einmal über die ganze Länge bewegen.

- 5. Tragen Sie eine ausreichende Menge Fett auf die Laufflächen auf.
- Fügen Sie die Riemenspannvorrichtungen A wieder in ihre Gehäuse ein und montieren Sie die Riemenspannschrauben B. Stellen Sie die Riemenspannung neu ein (s. S. US-59).
- 7. Befestigen Sie die Sicherungsschrauben C.

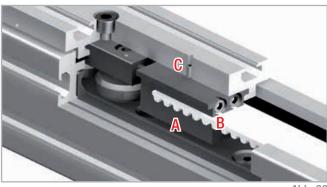



Abb. 33

#### Zubehör

#### Adapterplatten

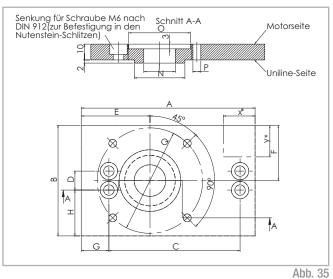
#### Standard Motor-Adapterplatten AC2

Montageplatten für die gängigsten Motoren oder Getriebe. Die Anschlussbohrungen für die Motoren oder Getriebe sind kundenseitig vorzunehmen. Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.



Abb. 34

| Größe | A<br>[mm] | B<br>[mm] | C<br>[mm] | D<br>[mm] | E<br>[mm] | F<br>[mm] | G<br>[mm] | H<br>[mm] | l<br>[mm] | N<br>[mm] |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 55    | 126       | 55        | 100       | 25        | 50,5      | 27,5      | 18        | 15        | Ø 30      | Ø 47      |
| 75    | 135       | 70        | 106       | 35        | 53,5      | 35        | 19        | 17,5      | Ø 35      | Ø 55      |


Tab. 46

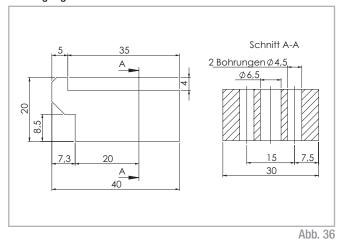
#### **NEMA-Platten AC1-P**

Montageplatten für die gängigsten Motoren oder Getriebe nach NEMA. Diese Platten werden montagefertig zur Befestigung an die Linearachsen geliefert. Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

| Größe | NEMA<br>Motoren / Getriebe |
|-------|----------------------------|
| 55    | NEMA 34                    |
| 75    | NEMA 42                    |

Tab. 47



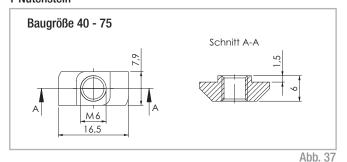

| Größe | A<br>[mm] | B<br>[mm] | C<br>[mm] | D<br>[mm] | E<br>[mm] | F<br>[mm] | G<br>[mm] | H<br>[mm] | l<br>[mm] | N<br>[mm] | 0<br>[mm] | P<br>[mm] | Q<br>[mm] |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 55    | 126       | 100       | 100       | 25        | 50,5      | 50        | 18        | 37,5      | 30        | Ø 47      | Ø 74      | Ø 5,5     | Ø 98,4    |
| 75    | 135       | 120       | 106       | 35        | 53,5      | 60        | 19        | 42,5      | 35        | Ø 55      | Ø 57      | Ø 7,1     | Ø 125,7   |

#### Tab. 48

#### Paarweiser synchroner Einsatz von Linearachsen

Sollen zwei Achsen parallel zueinander mit Synchronwelle eingesetzt werden, geben Sie dies bitte bei der Bestellung an, damit die Passfedernuten in den Motoranschlussbohrungen zueinander ausgerichtet werden.

#### Befestigungsklemme APF-2




Befestigungsklemme zur einfachen Montage einer Linearachse auf eine Montagefläche oder zur Verbindung zweier Einheiten mit oder ohne Verbindungsplatte (s. S. US-63).

Eventuell ist ein Distanzstück\* erforderlich.

\*(Evtl. notwendiges Distanzstück muss kundenseitig angefertigt werden)

T-Nutenstein



Das maximale Anzugsdrehmoment beträgt 10 Nm.

## Montagekits

#### T-Verbindungsplatte APC-1

Verbindungsplatte zur Montage der Antriebs- oder Umlenkköpfe mit der Läuferplatte einer dazu rechtwinklig angeordneten Linearachse (s. S. US-60). Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

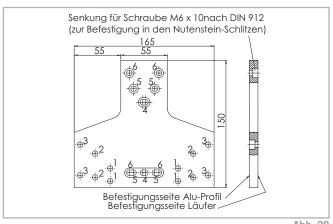
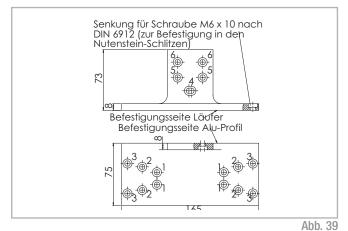



Abb. 38

#### Hinweis


Bei Verwendung von APC-1-Platten mit den Baureihen E- und ED kontaktieren Sie bitte die technische Abteilung von Rollon. Bei der Standardausführung gibt es eine Beeinträchtigung zwischen U-Schiene und APC-1-Platte. Eine spezielle Ausführung mit kürzerer U-Schiene an beiden Enden wird in das Angebot aufgenommen.

| Größe | Befestigungsbohrungen<br>für den Läufer | Befestigungsbohrungen<br>für das Profil |
|-------|-----------------------------------------|-----------------------------------------|
| 55    | Bohrungen 2                             | Bohrungen 5                             |
| 75    | Bohrungen 3                             | Bohrungen 6                             |

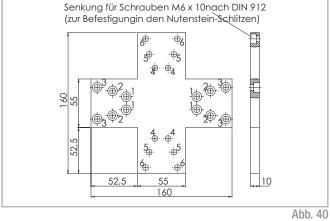
Tab. 49

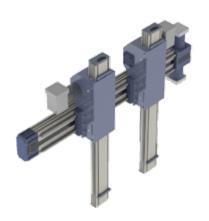
#### Winkel-Verbindungsplatte APC-2

Winkel-Verbindungsplatte zur Montage der Läuferplatte mit dem Aluminiumprofil einer im 90°-Winkel angeordneten Linearachse (s. S. US-61). Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

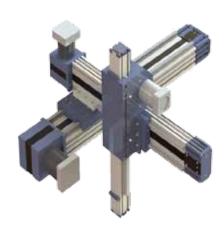


| Größe | Befestigungsbohrungen<br>für den Läufer | Befestigungsbohrungen<br>für das Profil |
|-------|-----------------------------------------|-----------------------------------------|
| 55    | Bohrungen 2                             | Bohrungen 5                             |
| 75    | Bohrungen 3                             | Bohrungen 6                             |
|       |                                         | Tab. 50                                 |


#### Kreuz-Verbindungsplatte APC-3


Kreuz-Verbindungsplatte zur Montage zweier Läufer im rechten Winkel zueinander (s. S. US-62).

Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.


| Größe | Befestigungsbohrungen<br>für den Läufer 1 | Befestigungsbohrungen<br>für den Läufer 2 |
|-------|-------------------------------------------|-------------------------------------------|
| 55    | Bohrungen 2                               | Bohrungen 5                               |
| 75    | Bohrungen 3                               | Bohrungen 6                               |

Tab. 51





## **Dreiachssysteme**



## **Dreiachssysteme**



#### Zentrale:

#### TBT-Technisches Büro Traffa e.K.

Theodor-Heuss-Str. 8 71336 Waiblingen

Tel.: +49 (0)7151/60424-0 Fax.: +49 (0)7151/60424-40

E-Mail: info@traffa.de Web: www.traffa.de

## **Dreiachssysteme**



## **Dreiachssysteme**



#### NL Bayern:

#### TBT Technisches Büro Traffa e.K.

Schöneckerstr. 4 91522 Ansbach

Tel.: +49 (0)981/487866-50 Fax.: +49 (0)981/487866-55

E-Mail: mail@traffa.de Web: www.traffa.de