Traffa

Bedienhandbuch AC-Endstufe LECS

Innovative Antriebslösungen

Der optimale Antrieb individuell für Ihre Anforderung

Bedienungsanleitung (Vereinfachte Ausgabe)

PRODUKTNAME

AC-Servomotor-Endstufe (Impulseingang-Ausführung/ Positionierausführung)

MODELL / Serie / Produktnummer

Serie LECSA

SMC Corporation

Inhalt

Inhalt	1
Einführung	6
Begriffe	6
1. Einstellungen	6
2. Vorgehen zur Betriebsvorbereitung	7
2.1 Flussdiagramm	7
3. Verdrahtung	8
3.1 Verdrahtung Spannungsversorgung	8
3.2 Beispiel Anschluss I/O-Signal	9 12 13
4. Modus-Parameterliste	.16
4.1 Modusübergreifende Parameter	16
4.2 Stellungsregelungsmodus:	16
4.3 Geschwindigkeitsregelungsmodus	17
4.4 Drehmoment-Steuermodus	17
4.5 Positioniermodus:	18
5. Parametereinstellung mit der Konfigurationssoftware (MR Configurator2 TM)	19
5.1 PC-Installationssoftware (MR Configurator2™) 5.1.1 Installation	19 19
5.2 Endstufenkonfiguration für erste Antriebsprüfung	20 21 21
5.3 Parametereinstellungen (Endstufe) 5.3.1 Änderung Parameterblock 5.3.2 Parameter lesen 5.3.3 Vorgehensweise Parameterkonfiguration (außer Auswahl "Control mode"). 5.3.4 Empfohlene Parameterwerte je Antriebsmodell 5.3.5 Elektronische Getriebe 5.3.6 Auswahl Steuerungsmodus 5.3.7 Parameter Eingangsimpulsbefehl einstellen	24 25 26 31
5.4 JOG-Modus in der Konfigurationssoftware5.4.1 JOG-Modus	35 36
5.5 Änderung der I/O-Signal-Zuweisung5.1 Parameterkonfiguration Auswahl automatisches Eingangssignal ON	37 37

	5.5.2 Anfangszuweisung I/O-Signale	39
	5.5.3 Signalzuweisung mit Konfigurationssoftware5.5.4 Beispiele zur Zuweisung im Positionssteuerungsmodus (Impulseingang)	
	5.5.5 Einstellung von max. 7 Punkten mithilfe der Punkte-Tabelle im	42
	Positionierbetrieb (Punkte-Tabelle)5.5.6 Prüfung der Zuweisung der I/O-Signale	43 47
	5.6 Positionierbetrieb mit Konfigurationssoftware	
	5.6.1 Positionierbetrieb	49
	5.6.2 Vorgehensweise Parameterkonfiguration	50
	5.6.3 Konfiguration Beschleunigungs-/Verzögerungszeit5.6.4 Konfiguration und Betrieb Verfahrweg Konfiguration Verfahrweg	
	5.7 Positionierbetrieb (Punkte-Tabelle) mithilfe der Konfigurationssoftware 5.7.1 Liste der Punkte-Tabelle	: 53 53
	5.7.2 Punkte-Tabelle-Daten	54
	5.7.3 Punkte-Tabelle, Konfiguration der Zielposition	
	5.7.4 Punkte-Tabelle, Konfiguration der Drehgeschwindigkeit5.7.5 Punkte-Tabelle, Konfiguration Konstante für Beschleunigungs- und	58
	Verzögerungszeit	59
	5.7.6 Sonstige Einstellungen	59
	5.7.7 Schritt-Vorschub	
	5.8 Parameter speichern/laden	
	5.8.1 Parameter speichern5.8.2 Gespeicherte Parameter laden	
	•	
	5.9 Projekt speichern/laden5.9.1 Projekt speichern	
	5.9.2 Gespeichertes Projekt laden	
	5.10 Punkte-Tabelle speichern/laden	
	5.10.1 Punkte-Tabelle speichern	65
	5.10.2 Gespeicherte Punkte-Tabelle laden	66
6.	Vorgehensweise zur Rückstellung in Ausgangsposition	67
	6.1 Stellungsregelungsmodus	67
	6.2 Positionierbetrieb (Punkte-Tabelle)	
	6.2.1 Anschlag als Rückstellung in Ausgangsposition	68
7	Antriebsmethoden für jeden Modus	70
	•	
	7.1 Positionssteuerungsmodus (Impulseingang)	/U
	7.2 Geschwindigkeitsregelungsmodus	/ 1 71
	7.3 Drehmoment-Steuermodus	
	7.3.1 Betriebsanweisungen Drehmoment-Steuermodus	
	7.4 Positionierbetrieb (Punkte-Tabelle)	
	7.4.1 Betriebsanweisungen für Punkte-Tabellen	73 73
	7.4.2 Einstellmethode	
	7.5 Positionierbetrieb (Programmiermethode)	76
	7.5.1 Einstellmethode	76
	7.5.2 Programmierbefehle	
	7.5.3 Programmierung von Betriebsanweisungen	78
8.	Fehlersuche	79
	8.1 Alarme und Warnungen	79
	₩	_

Serie LECSA / Endstufe Sicherheitshinweise

Diese Sicherheitshinweise sollen vor gefährlichen Situationen und/oder Sachschäden schützen. In den Sicherheitshinweisen wird die Gewichtung der potenziellen Gefahren durch die Warnhinweise "Achtung", "Warnung" oder "Gefahr" bezeichnet. Diese wichtigen Sicherheitshinweise müssen zusammen mit internationalen Sicherheitsstandards (ISO/IEC), den japanischen Industriestandards (JIS)*1) und anderen Sicherheitsvorschriften beachtet werden*2).

*1) ISO 4414: Fluidtechnik -- Allgemeine Regeln und sicherheitstechnische Anforderungen an Pneumatik Anlagen und deren Bauteile ISO 4413: Fluidtechnik -- Ausführungsrichtlinien Hydraulik

IEC 60204-1: Sicherheit von Maschinen - Elektrische Ausrüstung von Maschinen (Teil 1: Allgemeine Anforderungen)

ISO 10218-1992: Industrieroboter, Sicherheitsanforderungen.

JIS B 8370: Grundsätze für pneumatische Systeme.

JIS B 8361: Grundsätze für hydraulische Systeme.

JIS B 9960-1: Sicherheit von Maschinen – Elektrische Ausrüstung von Maschinen. (Teil 1: Allgemeine Anforderungen)

JIS B 8433-1993: Industrieroboter, Sicherheitsanforderungen usw.

*2) Gesetze zur Gesundheit und Sicherheit am Arbeitsplatz usw.

Achtung

Warnung

Gefahr

Achtung verweist auf eine Gefahr mit geringem Risiko, die leichte bis mittelschwere Verletzungen zur Folge haben kann, wenn sie nicht verhindert wird.

Warnung verweist auf eine Gefahr mit mittlerem Risiko, die schwere Verletzungen oder den Tod zur Folge haben kann, wenn sie nicht verhindert wird.

Gefahr verweist auf eine Gefahr mit hohem Risiko, die schwere Verletzungen oder den Tod zur Folge hat, wenn sie nicht verhindert wird.

Warnung

1. Verantwortlich für die Kompatibilität bzw. Eignung des Produkts ist die Person, die das System erstellt oder dessen technische Daten festlegt.

Da das hier beschriebene Produkt unter verschiedenen Betriebsbedingungen eingesetzt wird, darf die Entscheidung über dessen Eignung für einen bestimmten Anwendungsfall erst nach genauer Analyse und/oder Tests erfolgen, mit denen die Erfüllung der spezifischen Anforderungen überprüft wird.

Die Erfüllung der zu erwartenden Leistung sowie die Gewährleistung der Sicherheit liegen in der Verantwortung der Person, die die Systemkompatibilität festgestellt hat.

Diese Person muss anhand der neuesten Kataloginformation ständig die Eignung aller Produktdaten überprüfen und dabei im Zuge der Systemkonfiguration alle Möglichkeiten eines Geräteausfalls ausreichend berücksichtigen.

2. Maschinen und Anlagen dürfen nur von entsprechend geschultem Personal betrieben werden.

Das hier beschriebene Produkt kann bei unsachgemäßer Handhabung gefährlich sein.

Montage-, Inbetriebnahme- und Reparaturarbeiten an Maschinen und Anlagen, einschließlich der Produkte von SMC, dürfen nur von entsprechend geschultem und erfahrenem Personal vorgenommen werden.

3. Wartungsarbeiten an Maschinen und Anlagen oder der Ausbau einzelner Komponenten dürfen erst dann vorgenommen werden, wenn die Sicherheit gewährleistet ist.

Inspektions- und Wartungsarbeiten an Maschinen und Anlagen dürfen erst dann ausgeführt werden, wenn alle Maßnahmen überprüft wurden, die ein Herunterfallen oder unvorhergesehene Bewegungen des angetriebenen Obiekts verhindern.

Vor dem Ausbau des Produkts müssen vorher alle oben genannten Sicherheitsmaßnahmen ausgeführt und die Stromversorgung abgetrennt werden. Außerdem müssen die speziellen Sicherheitshinweise für alle entsprechenden Teile sorgfältig gelesen und verstanden worden sein.

Vor dem erneuten Start der Maschine bzw. Anlage sind Maßnahmen zu treffen, um unvorhergesehene Bewegungen des Produkts oder Fehlfunktionen zu verhindern.

4. Bitte wenden Sie sich an SMC und treffen Sie geeignete Sicherheitsvorkehrungen, wenn das Produkt unter einer der folgenden Bedingungen eingesetzt werden soll:

- 1) Einsatz- bzw. Umgebungsbedingungen, die von den angegebenen technischen Daten abweichen, oder Nutzung des Produkts im Freien oder unter direkter Sonneneinstrahlung.
- 2) Installation innerhalb von Maschinen und Anlagen, die in Verbindung mit Kernenergie, Eisenbahnen, Luft- und Raumfahrttechnik, Schiffen, Kraftfahrzeugen, militärischen Einrichtungen, Verbrennungsanlagen, medizinischen Geräten oder Freizeitgeräten eingesetzt werden oder mit Lebensmitteln und Getränken, Notausschaltkreisen, Kupplungs- und Bremsschaltkreisen in Stanzund Pressanwendungen, Sicherheitsausrüstungen oder anderen Anwendungen in Kontakt kommen, die nicht für die in diesem Katalog aufgeführten technischen Daten geeignet sind.
- 3) Anwendungen, bei denen die Möglichkeit von Schäden an Personen, Sachwerten oder Tieren besteht und die eine besondere Sicherheitsanalyse verlangen.
- 4) Verwendung in Verriegelungssystemen, die ein doppeltes Verriegelungssystem mit mechanischer Schutzfunktion zum Schutz vor Ausfällen und eine regelmäßige Funktionsprüfung erfordern.

Beachten Sie, dass ACHTUNG je nach Betriebsbedingungen zu ernsthaften Konsequenzen führen kann. Befolgen Sie die Anweisungen beider Gewichtungen im Sinne der Sicherheit für Personen.

Serie LECSA / Endstufe Sicherheitshinweise

Achtung

Das Produkt wurde für die Verwendung in der herstellenden Industrie konzipiert.

Das hier beschriebene Produkt wurde für die friedliche Nutzung in Fertigungsunternehmen entwickelt. Wenn Sie das Produkt in anderen Wirtschaftszweigen verwenden möchten, müssen Sie SMC vorher informieren und bei Bedarf entsprechende technische Daten aushändigen oder einen gesonderten Vertrag unterzeichnen.

Wenden Sie sich bei Fragen bitte an SMC.

Haftungsausschluss/Bestimmungserfüllung

Das Produkt unterliegt den folgenden Bestimmungen zu "Garantie und Haftungsausschluss" und zur "Einhaltung von Vorschriften".

Lesen Sie diese Punkte durch und erklären Sie Ihr Einverständnis, bevor Sie das Produkt verwenden.

Beschränkungen der Gewährleistung und Haftungsausschluss

Die Gewährleistungsfrist beträgt ein Betriebsjahr, gilt jedoch maximal bis zu 18 Monate nach Auslieferung dieses Produkts. *3)

Das Produkt kann zudem eine bestimmte Haltbarkeit oder Reichweite aufweisen oder bestimmte Ersatzteile benötigen. Bitte erkundigen Sie sich bei Ihrer nächstgelegenen Vertriebsniederlassung.

Wenn innerhalb der Gewährleistungsfrist ein Fehler oder Funktionsausfall auftritt, der eindeutig von uns zu verantworten ist, stellen wir Ihnen ein Ersatzprodukt oder die entsprechenden Ersatzteile zur Verfügung.

Diese Gewährleistung gilt nur für unser Produkt, nicht jedoch für andere Schäden, die durch den Ausfall dieses Produkts verursacht werden.

Lesen Sie vor der Verwendung von SMC-Produkten die Gewährleistungs- und Haftungsausschlussbedingungen sorgfältig durch, die in den jeweiligen spezifischen Produktkatalogen zu finden sind.

*3.) Diese 1-Jahres-Gewährleistung gilt nicht für Vakuumsauger.

Vakuumsauger sind Verschleißteile, für die eine Garantie von 1 Jahr ab der Auslieferung gilt.

Diese Gewährleistung wird auch nicht wirksam, wenn ein Produkt innerhalb der Gewährleistungsfrist durch die Verwendung eines Vakuumsaugers oder aufgrund einer Zersetzung des Gummimaterials verschleißt.

Einhaltung von Vorschriften

Beim Export des Produkts sind die Vorgaben des japanischen Ministeriums für Wirtschaft, Handel und Industrie (Kontrollgesetze zu Transaktionen in ausländischer Währung) strikt zu beachten.

Einführung

Dem Bediener wird empfohlen, vor der Verwendung von LECSA die Bedienungsanleitung zu lesen. Siehe produktspezifische Betriebsanleitung hinsichtlich Handhabung und für Einzelheiten zu Parametern.

Prüfen Sie die korrekte Verdrahtung der Hauptschaltkreis-Spannungsversorgung (100 V AC / 200 V AC) und der Spannungsversorgung für den Steuerschaltkreis (24 V). Für nähere Informationen siehe Kapitel 3.1 der LECSA-Bedienungsanleitung und Kapitel 2 der LECSA-Bedienungsanleitung (Vereinfachte Ausgabe).

Bei Verwendung der Einstellsoftware (MR-Configurator2TM) muss das LECSA-Modell angegeben werden. Wählen Sie über "Neu" und "Projekt" "MR-JN-A" aus.

Begriffe

Stellungsregelungsmodus (Impuls)	Regelung der Motordrehzahl und Drehrichtung mit Impulsfolge und Positionierung.			
	Einstellung der Positionierdaten, Drehzahl, Beschleunigungs-/			
Positionierbetrieb (Punkte-Tabelle)	Verzögerungszeitkonstante aus der Punkte-Tabelle des Endstufe und ON/OFF-Steuerung des Positionierbetriebs mithilfe des I/O-Signals (es können			
(1 drinte Tabelle)	bis zu 7 Punkte für die Punkte-Tabellen-Konfiguration verwendet werden).			

1. Einstellungen

Erforderliche Ausrüstung und Verdrahtungsanforderungen

1	Endstufe	LECSA*-S*
2	Motorkabel	LE-CSM-***
3	Encoder Kabel	LE-CSE-***
4	I/O-Stecker	LE-CSNA
	I/O-Kabel	LEC-CSNA-1
5	USB-Kabel	LEC-MR-J3USB
6	Konfigurationssoftware (MR Configurator2™)	LEC-MRC2*
7	Spannungsversorgungsstecker Hauptschaltkreis	CNP1 (Zubehör)
8	Spannungsversorgungsstecker Regelelektronik	CNP2 (Zubehör)

Anm.: Das Bremskabel ist in dieser Zeichnung nicht abgebildet. Siehe LECSA-Bedienungsanleitung für Details.

2. Vorgehen zur Betriebsvorbereitung

2.1 Flussdiagramm

3. Verdrahtung

3.1 Verdrahtung Spannungsversorgung

Anschluss des Antriebs und der Endstufe. Elektrisches Schaltschema ist für jeden Modus gleich.

(1) LECSA (Inkrementalencoder)

Beispiel: einphasige Versorgungsspannung 200 V AC.

- [1] Klemmen für Spannungsversorgung, L_1 und L_2 : Spannungsversorgung an Klemmen L_1 und L_2 angeben.
- [2] Klemmen der Motor-Spannungsversorgung (U, V, W) an die Klemmen der Endstufen-Spannungsversorgung anschließen (U, V, W). Masseanschluss des Motors an den Masseanschluss der Endstufe anschließen. Encoder Kabel anschließen.
- [3] Externe 24 V DC-Spannungsversorgung für Steuerung an die Spannungsversorgung des Regelschaltkreises anschließen.

Bei einer Versorgungsspannung von 100 V AC siehe LECSA-Bedienungsanleitung, Kapitel 3, für nähere Angaben.

3.2 Beispiel Anschluss I/O-Signal

Details zu Beispielen für den Anschluss der I/O-Signale der Endstufe.

3.2.1 Stellungsregelungsmodus (Sink-I/O-Schnittstellen)

(1) Anschlussbeispiel

Nachstehend ist ein Anschlussbeispiel für den Stellungsregelungsmodus dargestellt. Kabel nach Erfordernis anschließen.

Dies ist ein Verdrahtungsbeispiel bei Verwendung einer SPS Mitsubishi Electric (FX3U-□□MT/ES) zur Stellungsregelung. (Anschlussbeispiel eines offenen Kollektors) Siehe LECSA-Bedienungsanleitung und technische Angaben der SPS sowie die Bedienungsanleitungen der Positioniereinheit.

Bei Anschluss von Pin CN1-23 und Pin CN1-25 OPC mit +24 V DC versorgen.

Siehe LECSA Bedienungsanleitung, Kapitel 3.2, für Verdrahtungsdetails.

Siehe LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 3.2.1 (2) und (3) hinsichtlich Details zu Eingangs-/Ausgangssignalen.

Anm. 1)

Bei einer Befehls-Impulsfolge im offenen Kollektormodus wird nur die Sink-Schnittstelle (NPN) unterstützt. Die Source-Schnittstelle (PNP) wird nicht unterstützt.

(2) Eingangssignal Stellungsregelungsmodus: P, Geschwindigkeitsregelungsmodus: S, Drehmoment-Steuermodus: T, Punkte-Tabelle-Methode: CP, Programmiermethode CL

•: Automatisches ON kann eingestellt werden, O: Anfangseinstellung, D: Zuordnung anhand Parameter möglich, -: Zuordnung nicht verfügbar

Symbol	Signalbe- zeichnung	automatisch ON	Р	S	Т	CP/ CL	Funktion	
PP	Impulsfolge Vorwärtsdrehung	-	0	-	-	-	Im offenen Kollektor (max. Eingangsfrequenz 200 kpps)	
NP	Impulsfolge Rückwärtsdrehung	-	0	-	-	-	Impulsfolge Vorwärtsdrehung über PP-DOCOM Impulsfolge Rückwärtsimpuls über NP-DOCOM Es wird nur die Sink-Schnittstelle (NPN) unterstützt. Die Source-Schnittstelle (PNP) wird nicht unterstützt.	
PG	Impulsfolge Differenzial- Vorwärtsdrehung	-	0	-	-	-	Im Differenzialempfänger (max. Eingangsfrequenz 1 Mpps)	
NG	Impulsfolge Differenzial-Rück- wärtsdrehung	-	0	-	-	-	Impulsfolge Vorwärtsdrehung über PG-PP Impulsfolge Rückwärtsdrehung über NG-NP	
SON	Servo-on	•	0	0	0	0	Betrieb verfügbar wenn SON auf ON.	
RES	Reset	-	0	0	0		Alarm kann zurückgesetzt werden.	
LSP	Hubende Vorwärtsdrehung	•	0		-		Dieses Signal vor dem Betrieb einschalten. Wenn dieses Signal nicht anliegt, wird das Produkt sofort gestoppt und die Servobremse aktiviert.	
LSN	Hubende Rückwärts- drehung	•	0		-		Dieses Signal vor dem Betrieb einschalten. Wenn dieses Signal nicht anliegt, wird das Produkt sofort gestoppt und die Servobremse aktiviert.	
TL1	Grenze internes Drehmoment	-					Wenn dieses Signal nicht anliegt, liegt das Drehmoment unter dem eingestelltem Drehmoment.	
ST1	Start Vorwärtsdrehung	-	-	0	-	0	Start Servomotor	
ST2	Start Rückwärts- drehung	-	-	0	-	0	Start Servomotor	
RS1	Vorwärtsdrehung	-	-	-	0	-	Auswahl der Drehmomentrichtung des Servomotors.	
RS2	Rückwärts- drehung	-	-	-	0	-	Auswahl der Drehmomentrichtung des Servomotors.	
SP1	Drehzahl 1	-	-	0	0	-	Avenuell des Befalls Brahmanshvindigksit	
SP2	Drehzahl 2	-	-			-	Auswahl des Befehls Drehgeschwindigkeit während des Betriebs.	
SP3	Drehzahl 3	-	-			-		
EM1	erzwungener Stopp	•	0	0	0	0	Wenn dieses Signal anliegt, kann der erzwungene Stopp gelöst werden.	
CR	löschen	-	0	-	-	-	Wenn CR aktiviert ist, werden die P-Bereiche des Positionsregelungszählers an der ansteigenden Flanke gelöscht.	
DIO	Punkte-Tabelle Nr./ Programmanwahl Nr. 1	•	-	-	-	0	V V	
DI1	Punkte-Tabelle Nr./ Programmanwahl Nr. 2	•	-	-	-	0	Punkte-Tabelle, Programm und Rückstellungsmodus mit DI0 bis DI2 wählen.	
DI2	Punkte-Tabelle Nr. Programmanwahl Nr. 3	•	-	-	-			
MD0	Auswahl automatisch/ manuell	•	-	_	-	0	Wenn dieses Signal anliegt, ist der Automatikbetrieb aktiviert. Wenn dieses Signal nicht anliegt, ist der manuelle Betrieb aktiviert.	

(3) Ausganssignal Stellungsregelungsmodus: P, Geschwindigkeitsregelungsmodus: S, Drehmoment-Steuermodus: T, Punkte-Tabelle-Methode: CP, Programmiermethode CL

○: Anfangseinstellung, □: Zuordnung anhand Parameter möglich, -: Zuordnung nicht verfügbar

Symbol	Signalbezeichnung	Р	S	Т	CP/ CL	Funktion
ALM	Fehler	0	0	0	0	Bei einem Alarm ist dieses Signal ausgeschaltet.
RD	Antrieb bereit	0	0	0	0	Wenn Servo-on anliegt und Betriebsbereitschaft vorliegt, wird dieses Signal aktiviert.
INP	in Position	0	ı	ı	0	Dieses Signal liegt an, wenn sich der P-Impuls innerhalb des eingestellten Werte befindet.
SA	Drehzahl erreicht	ı	0	ı	ı	Wenn die Drehgeschwindigkeit des Servomotors die eingestellte Drehzahl erreicht, wird dieses Signal aktiviert.
VLC	Geschwindigkeits- begrenzung	-	-		-	Dieses Signal liegt an, wenn die Drehzahl über einen Parameter begrenzt ist.
TLC	Drehmoment- begrenzung			-		Dieses Signal liegt an, wenn das Drehmoment über einen Parameter begrenzt ist.
ZSP	Null Drehzahl					Wenn die Drehgeschwindigkeit des Servomotors unter dem Parameterwert liegt, wird dieses Signal aktiviert.
MBR	elektromagnetisches Bremsverriegelungs- system	0	0	0	0	Dieses Signal wird deaktiviert, wenn der Servo ausgeschaltet wird oder ein Fehler auftritt.

3.2.2 Geschwindigkeitsregelungsmodus (Sink-I/O-Schnittstellen)

(1) Anschlussbeispiel

Nachstehend ist ein Anschlussbeispiel für den Geschwindigkeitsregelungsmodus dargestellt. Kabel nach Erfordernis anschließen.

Siehe LECSA Bedienungsanleitung, Kapitel 3.2, für Verdrahtungsdetails. Siehe LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 3.2.1 (2) und (3) hinsichtlich Details zu Eingangs-/Ausgangssignalen.

3.2.3 Drehmoment-Steuermodus (Sink-I/O-Schnittstellen)

(1) Verdrahtungsbeispiel

Nachstehend ist ein Anschlussbeispiel für den Drehmoment-Steuermodus dargestellt. Kabel nach Erfordernis anschließen.

Siehe LECSA Bedienungsanleitung, Kapitel 3.2, für Verdrahtungsdetails. Siehe LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 3.2.1 (2) und (3) hinsichtlich Details zu Eingangs-/Ausgangssignalen.

3.2.4 Positioniermodus (Sink-I/O-Schnittstellen)

(1) Anschlussbeispiel

Nachstehend ist ein Anschlussbeispiel für den Stellungsregelungsmodus dargestellt. Kabel nach Erfordernis anschließen.

Bei Anschluss von Pin CN1-23 und Pin CN1-25 OPC mit +24 V DC versorgen.

Siehe LECSA Bedienungsanleitung, Kapitel 3.2, für Verdrahtungsdetails.

Siehe LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 3.2.1 (2) und (3) hinsichtlich Details zu Eingangs-/Ausgangssignalen.

3.2.5 Source I/O-Schnittstellen

Mit dieser Endstufe können Source I/O-Schnittstellen verwendet werden In diesem Fall sind alle DI-1-Eingangssignale und DO-1-Ausgangssignale Source-Signale. Verdrahtung entsprechend den folgenden Schnittstellen ausführen.

(1) Schnittstelle Digitaleingang DI-1

(2) Schnittstelle Digitalausgang DO-1 Es kann ein Spannungsabfall bis max. 2,6 V in der Endstufe auftreten.

ORIGINALBILD ERFORDERLICH

Anm. Bei einer Beeinträchtigung des Relaisbetriebs durch den Spannungsabfall (2,6 V) Spannung (26,4 V) einer externen Quelle anlegen.

4. Modus-Parameterliste

Diese Parameter müssen für jeden Steuermodus konfiguriert werden. Konfigurieren Sie Parameter nach Erfordernis.

Siehe LECSA-Bedienungsanleitung (Vereinfachte Ausgabe), Kapitel 5.3 und LECSA Bedienungsanleitung, Kapitel 4, für weitere Informationen.

Siehe LECSA-Bedienungsanleitung, Kapitel 4, für Parameter, die nicht in diesem Dokument aufgeführt sind.

Zur Einstellung der Parameter ist die Konfigurationssoftware (MR Configurator2TM:LEC-MRC2E) erforderlich.

- *1 Konfigurationssoftware Version 1.19V oder höher erforderlich.
- *2 Die Konfigurationssoftware (MR Configurator2™: LEC-MRC2E) ist gesondert zu bestellen.
- *3 Das USB-Kabel (LEC-MR-J3USB) ist gesondert zu bestellen.

4.1 Modusübergreifende Parameter

(1) [Parameter Grundeinstellung (Nr.PA ==)]

Nr.	Symbol	Bezeichnung	Anfangswert	Einheit
PA01	*STY	Steuermodus	000h	

(2) [I/O-Parametereinstellung (Nr. PD)

Diese Parameter sind einzustellen, wenn die Belegung der Ein-/Ausgangssignale geändert und der automatische Signaleingang eingeschaltet wird. Siehe LECSA-Bedienungsanleitung (Vereinfachte Ausgabe), Kapitel 5.5 und LECSA Bedienungsanleitung, Kapitel 4.4, für weitere Informationen.

4.2 Stellungsregelungsmodus:

(1) [Parameter Grundeinstellung (Nr.PADD)]

Nr.	Symbol	Beschreibung	Anfangswert	Einheit
	,	ŭ	ű	
PA05	*FBP	Anzahl der Impulseingangsbefehle pro Umdrehung	100	×100
		1 3 3 1		Impulse/U
PA06	СМХ	Zähler elektronisches Getriebe	1	
FAUU	CIVIX	(Zähler Multiplikationsfaktor Impulseingangsbefehl)		
PA07	CDV	Nenner elektronisches Getriebe	1	
PAU		(Nenner Multiplikationsfaktor Impulseingangsbefehl)		
PA08	ATU	Automatische Einstellungsfunktion	001h	
PA09	RSP	Kennlinie automatische Einstellungsfunktion	6	
PA10	INP	In-Position-Bereich	100	Impulse
PA13	*PLSS	Format Eingangsimpulsbefehl	000h	
PA14	*POL	Auswahl Drehrichtung	0	

4.3 Geschwindigkeitsregelungsmodus (1) [Parameter Grundeinstellung (Nr.PA□□)]

Nr.	Symbol	Bezeichnung	Anfangswert	Einheit
PA08	ATU	Automatische Einstellungsfunktion	001h	
PA09	RSP	Kennlinie automatische Einstellungsfunktion	6	

(2) [Erweiterte Parametereinstellung (Nr. PC□□)]

Nr.	Symbol	Bezeichnung		Anfangswert	Einheit
PC01	STA	Konstante für Beschleunigungszeit		0	ms
PC02	STB	Konstante für Verzögerungszeit		0	ms
PC05	SC0	Befehl interne Drehzahl 0		0	U/min
PC06	SC1	Befehl interne Drehzahl 1		100	U/min
PC07	SC2	Befehl interne Drehzahl 2		500	U/min
PC08	SC3	Befehl interne Drehzahl 3		1000	U/min
PC31	SC4	Befehl interne Drehzahl 4 [a	ngewendet]	200	U/min
PC32	SC5	Befehl interne Drehzahl 5 [a	ngewendet]	300	U/min
PC33	SC6	Befehl interne Drehzahl 6 [a	ngewendet]	500	U/min
PC34	SC7	Befehl interne Drehzahl 7 [a	angewendet]	800	U/min

4.4 Drehmoment-Steuermodus

Nr.	Symbol	Bezeichnung		werkseitige Einstellung	Einheit
PC01	STA	Konstante für Beschleunigungszeit		0	ms
PC02	STB	Konstante für Verzögerungszeit		0	ms
PC05	SC0	interne Geschwindigkeitsbegrenzung 0		0	U/min
PC06	SC1	interne Geschwindigkeitsbegrenzung 1		100	U/min
PC07	SC2	interne Geschwindigkeitsbegrenzung 2		500	U/min
PC08	SC3	interne Geschwindigkeitsbegrenzung 3		1000	U/min
PC31	SC4	interne Geschwindigkeitsbegrenzung 4	[angewendet]	200	U/min
PC32	SC5	interne Geschwindigkeitsbegrenzung 5	[angewendet]	300	U/min
PC33	SC6	interne Geschwindigkeitsbegrenzung 6	[angewendet]	500	U/min
PC34	SC7	interne Geschwindigkeitsbegrenzung 7	[angewendet]	800	U/min

4.5 Positioniermodus

(1) [Parameter Grundeinstellung (Nr.PA ==)]

•		7.		
Nr.	Symbol	Bezeichnung	Anfangswert	Einheit
PA05	*FBP	Anzahl der Impulseingangsbefehle pro Umdrehung	100	×100 Impulse/U
PA06	CMX	Zähler elektronisches Getriebe (Zähler Multiplikationsfaktor Impulseingangsbefehl)	1	
PA07	CDV	Nenner elektronisches Getriebe (Nenner Multiplikationsfaktor Impulseingangsbefehl)	1	
PA08	ATU	Automatische Einstellungsfunktion	001h	
PA09	RSP	Kennlinie automatische Einstellungsfunktion	6	
PA10	INP	In-Position-Bereich	100	Impulse
PA13	*PLSS	Format Eingangsimpulsbefehl	000h	
PA14	*POL	Auswahl Drehrichtung	0	

(2) [Positionierung Parametereinstellung (Nr. PE ==)]

Nr.	Symbol	Bezeichnung	Anfangswert	Einheit
PE01	CTY	Auswahl Befehlsmodus	0000h	
PE02	FTY	Auswahl Einspeisefunktion	0000h	
PE03	ZTY	Ausführung Rückstellung in Ausgangsposition	0010h	
PE04	ZRF	Geschwindigkeit Rückstellung in Ausgangsposition	500	U/min
PE06	ZST	Distanz Ausgangsposition	0	μm
PE07	FTS	Konstanten für Rückstellung in Ausgangsposition/JOG-Betrieb Beschleunigungs-/Verzögerungszeit	100	ms
PE08	ZPS	Positionsdaten Rückstellung in Ausgangsposition	0	×10 ^{STM} µm
PE13	JOG	JOG-Geschwindigkeit	100	U/min
PE16	LMPL	Softwareendschalter +	0	×10 ^{S™} µm
PE17	LMPH	Softwareenuschaller +	U	×10 μm
PE18	LMNL	Softwareendschalter -	0	×10 ^{S™} µm
PE19	LMNH	Softwareeriuscriaiter -	0	χιο μιιι

(3) [I/O-Parametereinstellung (Nr. PD)

Diese Parameter sind einzustellen, wenn die Belegung der Ein-/Ausgangssignale geändert und die Punkte-Tabelle mit max. 7 Punkten verwendet wird.

Siehe LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 5.5 und LECSA Bedienungsanleitung, Kapitel 4.4, für weitere Informationen.

5. Parametereinstellung mit der Konfigurationssoftware (MR Configurator2™)

In diesem Kapitel wird das Verfahren zur Einstellung der wesentlichen Parameter mithilfe der Konfigurationssoftware (MR Configurator2[™]: LEC-MRC2E) beschrieben. Siehe LECSA-Bedienungsanleitung, Kapitel 4, für Parameterdetails.

5.1 PC-Installationssoftware (MR Configurator2™)

- *1 Konfigurationssoftware Version 1.19 V oder höher erforderlich.
- *2 Die Konfigurationssoftware (MR Configurator2™:LEC-MRC2E) ist gesondert zu bestellen.
- *3 Das USB-Kabel (LEC-MR-J3USB) ist gesondert zu bestellen.

5.1.1 Installation

Die Installation ist gemäß der Bedienungsanleitung MR Configurator2[™] (Manual/ib0300160*.pdf) durchzuführen, welche in der CD-ROM der Konfigurationssoftware (MR Configurator2[™]) enthalten ist. Die Software MR Configurator2 wird auf dem PC installiert.

5.2 Endstufenkonfiguration für erste Antriebsprüfung

Schalten Sie die 24 V DC- und 230 V AC-Spannungsversorgung des LECSA-Antriebs ein und warten Sie, bis die Endstufenanzeige wie unten dargestellt blinkt.

5.2.1 Starten der Konfigurationssoftware (MR Configurator2™)

- ① PC und LECSA mit dem USB-Kabel verbinden.
- ② Spannungsversorgung für LECSA einschalten.
- 3 Software MR Configurator2 starten.

Es erscheint nachstehender Bildschirm:

5.2.2 Systemeinstellungen

① Aus dem Menü "Project" "New" auswählen. Es erscheint der Bildschirm "New Project".

5.2.3 Modellauswahl

- ① In der Modellauswahlliste erscheint die Serie der Mitsubishi Electric Corporation. Wählen Sie MR-JN-A, wenn Sie LECSA verwenden.
- 2 Wählen Sie "servo amplifier connection" als Kommunikationsgerät
- 3 Auf "OK" klicken.
- 4 Auf "OK" klicken.

5.2.4 Endstufenpüfung ONLINE

Prüfen, dass die Endstufe aktiviert ist (ONLINE).

Prüfen, dass das Symbol "ONLINE/OFFLINE" angezeigt wird.

" angezeigt wird, ist sie OFFLINE.

- * Im OFFLINE-Zustand findet keine Kommunikation zwischen PC und Endstufe statt. Überprüfen Sie bitte folgende Punkte:
 - Ist die Spannungsversorgung der Endstufe eingeschaltet?
 - Sind PC und Endstufe über das USB-Kabel miteinander verbunden?
 - Ist der USB-Driver installiert?
 - Ist der USB-Anschluss-"Port" richtig angegeben?

5.2.5 Hilfe-Funktion

Durch Anklicken von "MR Configurator2 Help" unter "Help" (in jedem Bildschirm verfügbar) erscheint ein Hilfe-Bildschirm.

5.3 Parametereinstellungen (Endstufe)

Zum Einstellen der Parameter ist die Konfigurationssoftware (MR Configurator2TM:LEC-MRC2E) erforderlich.

- *1 Konfigurationssoftware Version 1.19 V oder höher erforderlich.
- *2 Die Konfigurationssoftware (MR Configurator2™:LEC-MRC2E) ist gesondert zu bestellen.
- *3 Das USB-Kabel (LEC-MR-J3USB) ist gesondert zu bestellen.
- ① Wählen Sie im Menü "Parameter" den Punkt "Parameter Setting", damit sich der Bildschirm für Parametereinstellungen öffnet.
- ② Die Parameter sind in "MR2 Help" erläutert. (Sollte dieser Menüpunkt nicht angezeigt werden, im Menü "View" den Punkt "Docking window" - "Docking help" wählen.)

3 Durch Klicken auf jede Position der "List display" wird zu jeder Position der Bildschirm "Parameter list" angezeigt.

Nach Klicken auf "Basic" erscheint folgender Bildschirm:

Basic				Selected	Items Write	Singl	e Axis Write	
No.	Abbr.	Name	L	Inits	Setting r	ange	Axis1	
PA01	*STY	Control mode			0	000-0F55	0000	
PA02	*REG	Regenerative option			0	000-71FF	0000	
PA03	*ABS	Absolute position detection system			0	000-0004	0000	
PA04	*AOP1	Function selection A-1			0	000-F031	0000	
PA05	*FBP	Number of command input pulses per revolution			0-0 / 10	00-50000	0	
PA06	CMX	Elec. gear numerator (Cmd. pls. mult. factor num.)			1	1048576	1	
PA07	CDV	Elec. gear denominator (Cmd. pls. mult. factor den.)			1	1048576	1	
PA08	ATU	Auto tuning mode			0	0000-0003		
PA09	RSP	Auto tuning response				1-32		
PA 10	INP	In-position range	pulse			0-65535	100	
PA11	TLP	Forward rotation torque limit	%		0	.0-100.0	100.0	
PA12	TLN	Reverse rotation torque limit	%		0	.0-100.0	100.0	
PA13	*PLSS	Command pulse input status			0	000-0812	0000	
PA14	*POL	Rotation direction selection				0-1	0	
PA15	*ENR	Encoder output pulse	pulse/r	ev	1	1048576	4000	
PA16	*ENR2	For manufacturer setting			0	000-FFFF	0000	
PA17	*MSR	For manufacturer setting			0	000-FFFF	0000	
PA 18	*MTY	For manufacturer setting			01	000-FFFF	0000	
PA 19	*BLK	Parameter block			0	000-FFFF	000C	

Siehe LECSA-Bedienungsanleitung, Kapitel 4, für Parameterdetails.

5.3.1 Änderung Parameterblock

Zur Einstellung aller Parameter.

- ① Auf den Reiter "Basic" klicken und den Wert in "PA19" auf "00E" ändern.
- 2 Auf die "PA19"-Spalte klicken und anschließend "Selected Items Write" klicken.
- 3 Zur Übernahme der Parametereinstellung die Spannungsversorgung aus- und einschalten.

4 Auf "Read" klicken.

Bei der Änderung von Parametern sind folgende Punkte zu beachten.

- Anm. 1) Zu einigen Parametern erscheint "Enable once on again turning the power OFF after setting" (zur Übernahme nach Parameteränderung Spannungsversorgung aus- und einschalten). Die Änderungen werden in der Endstufe erst nach erneutem Einschalten wirksam.
- Anm. 2) "Selected Items Write": Mit diesem Befehl werden die Parameterwerte in der Endstufe gespeichert. "Single Axis Write": Mit diesem Befehl werden alle Parameter in der Endstufe gespeichert.
- Anm. 3) Die Parameter in "For manufacturer setting" nicht ändern. Andernfalls können Fehlfunktionen der Endstufe die Folge sein.

5.3.2 Parameter lesen

Zum Einlesen der Endstufenparameter in die Software ist ein "read"-Verfahren durchzuführen.

- ① Wählen Sie aus dem Menü-Punkt "View" "parameter (P)" und anschließend auf "parameter setting (P)". Es erscheint das Fenster "Parameter Settings".
- ② Auf "Read" klicken.

5.3.3 Vorgehensweise Parameterkonfiguration (außer Auswahl "Control mode")

Parameter für jeden Antrieb eingeben.

Die Parameter je nach Anwendung ändern.

Siehe LECSA-Bedienungsanleitung, Kapitel 4, für Parameterdetails.

Siehe LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 5.4.3 hinsichtlich empfohlener Parameterwerte für SMC-Antriebe.

Bei Verwendung des Positionssteuerungsmodus (Impulseingang) die Parameter PE02/PE03/PE04/PE07/PE08/PE10/PE11 nicht ändern (diese Parameter sind nur für den Positioniermodus (Punkte-Tabelle/Programmiermethode) zu ändern).

- Beispiel zu Einstellung des Steuerungsmodus (PA01) (wenn "position control mode (pulse input)" gewählt ist).
 - ① Unter dem Reiter "Basic" den Parameter PA01 auf "000" setzen.
- · Beispiel zu Einstellung des Steuerungsmodus (PA01) (wenn "Positioning (Point table)" gewählt ist).
 - ① Unter dem Reiter "Basic" den Parameter PA01 auf "006" setzen.
 - 2 Auf "Single Axis Write" klicken.
 - 3 Spannungsversorgung aus- und wieder einschalten. Anschließend ist der Parameter übernommen.

Bei der Änderung von Parametern sind folgende Punkte zu beachten.

- Anm. 1) Zu einigen Parametern erscheint "Enable once on again turning the power OFF after setting" (zur Übernahme nach Parameteränderung Spannungsversorgung aus- und einschalten). Die Änderungen werden in der Endstufe erst nach erneutem Einschalten wirksam.
- Anm. 2) "Selected Items Write": Mit diesem Befehl werden die Parameterwerte in der Endstufe gespeichert. "Single Axis Write": Mit diesem Befehl werden alle Parameter in der Endstufe gespeichert.
- Anm. 3) Die Parameter in "For manufacturer setting" nicht ändern. Andernfalls können Fehlfunktionen der Endstufe die Folge sein.

5.3.4 Empfohlene Parameterwerte je Antriebsmodell

Die Parameter je nach Anwendung ändern. Siehe LECSA-Bedienungsanleitung, Kapitel 4, für weitere Informationen.

Empfohlene Parameterwerte [LEF]

Impromene Farameterwerte											
			LEFS25 LEFS32 LEFS40								
Serie	_	ungs- nbol	Н	Α	В	Н	Α	В	Н	А	В
	Stei	gung	20	12	6	24	16	8	30	20	10
Parameter *1,*2	Param Nr.	Anfangs- wert			•	empt	fohlener	Wert		•	
Anzahl der Eingangsimpulsbefehle pro Umdrehung *3	PA05	100	100								
Zähler elektronisches Getriebe *3	PA06	1				100 (Posit	tionierb	etrieb:	10)		
Nenner elektronisches Getriebe *3	PA07	1	20	12	6	24	16	8	30	20	10
Multiplikation Vorschublänge (STM) (Faktor)	PE02	0000			0000 ((<1.000 Hi	übe)/00(01 (>1.0	00 Hübe)		
Ausführung Rückstellung in Ausgangsposition	PE03	0010	□□□3 (Anschlagausführung)								
Richtung Rückstellung in Ausgangsposition	PE03	0010	□□1□ (Motorseite)								
Geschwindigkeit Rückstellung in Ausgangsposition (U/min)	PE04	500	90	150	300	75	113	225	60	90	180
Konstanten für Rückstellung in Ausgangsposition/JOG-Betrieb Beschleunigungs-	PE07	100	1.000	600	300	1200	800	400	1500	1000	500
Positionsdaten Rückstellung in Ausgangsposition (µm)	PE08	0			-2000	(<1000 H	übe)/-20	0 (>100	00 Hübe)		
Rückstellung in Ausgangsposition Anschlagausführung Anschlagzeit (ms)	PE10	100					200				
Rückstellung in Ausgangsposition Anschlagausführung Drehmomentgrenzwert (%)	PE11	15					30				
Regenerationsoption	PA02	000			00	0 (Non)/00)2 (LEC-	MR-RB	-032)		
Auswahl Drehrichtung *4	PA14	0				1 (+: Ge	gen-Mo	torseite	e)		
adaptive Einstellungsfunktion	PB01	000					000				
Motorlast Trägheitsmoment	PB06	7					7				
Maschinen-Vibrations- Unterdrückung 1	PB13	4500					4500				
Kerbformauswahl 1	PB14	000					000				

abweichend vom Ausgangswert

(Parameter Erstkonfiguration \Rightarrow empfohlenen Parameterwert einstellen \Rightarrow Start)

^{*1.} Parameter wird auf den empfohlenen Wert eingestellt. Parameter entsprechend der Kundenanwendung einstellen.

^{*2.} Abhängig von der Form oder Ausrichtung des Werkstücks können mechanische Resonanzen auftreten. Diesen Parameter bei der Erstkonfiguration ändern.

^{*3.} Außer Positionierbetrieb: Antriebsverfahrweg 10 μm/Impuls pro Impuls. Positionierbetrieb: min. Antriebsverfahrweg 1 μm.

^{*4.} Bei einer Motor-Einbaulage rechte Seite parallel (LEFS*R) oder linke Seite parallel (LEFS*L) ist die Drehrichtung.

			LEFB25	LEFB25U	LEFB32	LEFB32U	LEFB40	LEFB40U			
Serie	Steigu	ngssymbol	S								
20110		eigung	54								
	Param	Anfangs-									
Parameter *1,*2	Nr.	wert	empfohlener Wert								
Anzahl der											
Eingangsimpulsbefehle pro Umdrehung *3	PA05	100	100								
Zähler elektronisches											
Getriebe *3	PA06	1			100 (Position	nierbetrieb: 10	0)				
Nenner elektronisches	PA07	1				54					
Getrieb *3											
Multiplikation Vorschublänge (STM)	PE02	0000		0000	(~1000 Hijhe	e)/0001 (>1000	Hübe)				
(Faktor)	1 202	0000		0000	(<1000 11000	710001 (>1000	, Hubej				
Ausführung Rückstellung	PE03	0010			□□□3 (Δnech	lagausführur	na)				
in Ausgangsposition	1 200	0010	□□□3 (Anschlagausführung)								
Richtung Rückstellung in Ausgangsposition	PE03	0010	□□1□ (Motorseite)								
Richtung Rückstellung in											
Ausgangsposition	PE04	500	33								
Drehzahl (U/min)											
Konstanten für Rückstellung in											
Ausgangsposition/JOG-	5507	400									
Betrieb	PE07	100			2	700					
Beschleunigungs-/Verzö- gerungszeit (ms)											
Positionsdaten											
Rückstellung in	PE08	0		-3000	(<1000 Hübe	e)/-300 (>1000	Hübe)				
Ausgangsposition (µm) Rückstellung in											
Ausgangsposition	PE10	100				200					
Anschlagausführung	FEIU	100			4	200					
Anschlagzeit (ms) Rückstellung in											
Ausgangsposition	PE11	15				30					
Anschlagausführung Drehmomentgrenzwert (%)	1 611	10				30					
Regenerationsoption	PA02	000		nn	0 (Non)/002 (LEC-MR-RB-	032)				
			1 (+: Gegen-	0 (+ : Gegen-	1 (+: Gegen-	0 (+ : Gegen-	1 (+: Gegen-	0 (+ : Gegen-			
Auswahl Drehrichtung	PA14	0	Motorseite)	Motorseite)	Motorseite)	Motorseite)	Motorseite)	Motorseite)			
★ adaptive Einstellungsfunktion	PB01	000	00)2		0	000				
★ Motorlast	DDCC	-				F0.					
Trägheitsmoment	PB06	7				50					
★ Maschinen-Vibrations-	PB13	4500	40	00		4	500				
Unterdrückung 1 ★ Kerbformauswahl 1	PB14	000	03	30		<u> </u>	000				
A Neibioimauswaiii I	1 1014	000	U	,,,		amotoroino					

★ Parametereinstellung erforderlich. abweichend vom Ausgangswert

*3. Außer Positionierbetrieb: Antriebsverfahrweg 10 μm/Impuls pro Impuls. Positionierbetrieb: min. Antriebsverfahrweg 1 μm.

^{*1.} Parameter wird auf den empfohlenen Wert eingestellt. Parameter entsprechend der Kundenanwendung einstellen.

^{*2.} Abhängig von der Form oder Ausrichtung des Werkstücks können mechanische Resonanzen auftreten. Diesen Parameter bei der Erstkonfiguration ändern. (Parameter Erstkonfiguration ⇒ empfohlenen Parameterwert einstellen ⇒ Start)

Empfohlene Parameterwerte [LEJ]

	[LEJ]								
			LEJS40			LEJS63		LEJB40	LEJB63
Steigun	gssymbol	Н	Α	В	Н	Α	В	-	
Stei	gung	24	16	8	30	20	10	27	42
Param Nr.	Anfangs- wert	empfohlener Wert							
PA05	100	100							
PA06	1	100 (Positionierbetrieb: 10)							
PA07	1	24	16	8	30	20	10	27	42
PE02	0000			0000	(<1000 H	übe)/0001	(>1000 H	übe)	
PE03	0010				□□□3 (An	schlagau	sführung)		
PE03	0010			:	1	□ (Motors	eite)	-	
PE04	500	75	113	225	60	90	180	133	86
PE07	100	1200	800	400	1500	1.000	500	1350	2100
PE08	0			-200	0 (<1000 H	lübe)/-200	(>1000 H	übe)	
PE10	100					200			
PE11	15	30							
PA02	000		000	0 (Non)/00	2 (LEC-M	R-RB-032)/003 (LEC		
PA14	0		(+: Gegen	1 -Motorseit	e)		·) Motorseite)
PB01	000			0	00			002	000
PB06	7				7			5	0
PB13	4500			45	500			400	4500
PB14	000			0	00			030	000
	Stei Param Nr. PA05 PA06 PA07 PE02 PE03 PE04 PE07 PE08 PE10 PE11 PA02 PA14 PB01 PB06 PB13 PB06 PB13 PB06 PB13 PA02 PA14 PB06 PB13 PA06 PB13 PA07 PA07 PB06 PB13 PA08 PA08 PA09 PA19 PA09 PB19 PA09 PB19 PA09 PB19 PA09 PB19 PB09 PB19 PB19	Nr. wert PA05 100 PA06 1 PA07 1 PE02 0000 PE03 0010 PE03 0010 PE04 500 PE07 100 PE08 0 PE10 100 PE11 15 PA02 000 PA14 0 PB01 000 PB06 7 PB13 4500	Steigung 24 Param Nr. Anfangs- went PA05 100 PA06 1 PA07 1 24 PE02 0000	Steigungssymbol H A Param Nr. Anfangswert 24 16 Param Nr. Anfangswert 4 16 PA06 1 1 24 16 PE02 0000 4 16 16 PE03 0010 <td>Steigungssymbol H A B Param Nr. Anfangswert 16 8 PA05 100 100 100 PA06 1 1 24 16 8 PE02 0000 0000 0000 0000 PE03 0010 000 000 000 PE04 500 75 113 225 PE07 100 1200 800 400 PE08 0 -200 -200 PE10 100 15 100 100 PE11 15 15 15 15 15 PA02 000 000 000 000 000 PB01 000 0 0 0 0 PB06 7 7 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 <t< td=""><td>Steigungssymbol H A B H Param Nr. Anfangs- wert emp PA05 100 100 (Pos PA06 1 100 (Pos PA07 1 24 16 8 30 PE02 0000 0000 (<1000 H</td> 0000 (<1000 H</t<></td> 000 (<1000 H	Steigungssymbol H A B Param Nr. Anfangswert 16 8 PA05 100 100 100 PA06 1 1 24 16 8 PE02 0000 0000 0000 0000 PE03 0010 000 000 000 PE04 500 75 113 225 PE07 100 1200 800 400 PE08 0 -200 -200 PE10 100 15 100 100 PE11 15 15 15 15 15 PA02 000 000 000 000 000 PB01 000 0 0 0 0 PB06 7 7 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 <t< td=""><td>Steigungssymbol H A B H Param Nr. Anfangs- wert emp PA05 100 100 (Pos PA06 1 100 (Pos PA07 1 24 16 8 30 PE02 0000 0000 (<1000 H</td> 0000 (<1000 H</t<>	Steigungssymbol H A B H Param Nr. Anfangs- wert emp PA05 100 100 (Pos PA06 1 100 (Pos PA07 1 24 16 8 30 PE02 0000 0000 (<1000 H	Steigung 24 16 8 30 20 Param Nr. Anfangs- wert empfohlener V PA05 100 100 100 PA06 1 100 (Positionierbe PA07 1 24 16 8 30 20 PE02 0000 0000 (<1000 Hübe)/0001	Steigungsymbol H A B H A B Regions Re	Steigungssymbol

★ Parametereinstellung erforderlich.abweichend vom Ausgangswert

^{*1.} Parameter wird auf den empfohlenen Wert eingestellt. Parameter entsprechend der Kundenanwendung einstellen.

^{*2.} Abhängig von der Form oder Ausrichtung des Werkstücks können mechanische Resonanzen auftreten. Diesen Parameter bei der Erstkonfiguration ändern. (Parameter Erstkonfiguration ⇒ empfohlenen Parameterwert einstellen ⇒ Start)

^{*3.} Außer Positionierbetrieb: Antriebsverfahrweg 10 μm/Impuls pro Impuls. Positionierbetrieb: min. Antriebsverfahrweg 1 μm.

Empfohlene Parameterwerte [LEY]

		LEY]												
			LEY	25/LEY	G25	LEY2	5D/LEY	′G25D	LEY	32/LEY0		LEY3	2D/LEY	G32D
Serie	Steigu	ngssymbol	Α	В	С	Α	В	С	Α	В	С	Α	В	С
	Ste	eigung	12	6	3	12	6	3	20	10	5	16	8	4
Parameter *1,*2	Param	Anfangs-						emnfok	nlener W	/ ort				
	Nr.	wert						citipioi	iichich v	CIT				
Anzahl der														
Eingangsimpulsbefehle pro Umdrehung *3	PA05	100	100											
Zähler elektronisches Getriebe *3	PA06	1	100 (Positionierbetrieb: 10)											
Nenner elektronisches Getriebe *3	PA07	1	12	6	3	12	6	3	20	10	5	16	8	4
Multiplikation Vorschublänge (STM) (Faktor)	PE02	0000		<u>. </u>	<u>: </u>	0000	(<100	0 Hüb	e)/0001	(>1000	Hübe)	·	·	
Ausführung Rückstellung in Ausgangsposition	PE03	0010				[<u> </u>	(Ansc	hlagaus	führun	ıg)			
Richtung Rückstellung in Ausgangsposition	PE03	0010						o 1 o (Motorse	eite)				
Richtung Rückstellung in Ausgangsposition Drehzahl (U/min)	PE04	500	150	300	600	150	300	600	90	180	360	112	225	450
Konstanten für Rückstellung in Ausgangsposition/JOG- Betrieb Beschleunigungs-/ Verzögerungszeit (ms)	PE07	100	600	300	150	600	300	150	1000	500	250	800	400	200
Positionsdaten Rückstellung in Ausgangsposition (µm)	PE08	0				-2000	(<100	00 Hüb	e)/-200	(>1000	Hübe)			
Rückstellung in Ausgangsposition Anschlagausführung Anschlagzeit (ms)	PE10	100							200					
Rückstellung in Ausgangsposition Anschlagausführung Drehmomentgrenzwert (%)	PE11	15							30					
Regenerationsoption	PA02	000				00	0 (No	n)/002	(LEC-M	R-RB-	032)			
Auswahl Drehrichtung *4	PA14	0		0 +: Gege otorseit			1 +: Geg otorse			0 ⊦: Gege otorseit			1 ⊦: Geg otorsei	
adaptive Einstellungsfunktion	PB01	000							000					
Motorlast Trägheitsmoment	PB06	7							7					
Maschinen-Vibrations-	PB13	4500						4	4500					
Unterdrückung 1 Kerbformauswahl 1	PB14			000										

abweichend vom Ausgangswert

(Parameter Erstkonfiguration ⇒ empfohlenen Parameterwert einstellen ⇒ Start)
*3. Außer Positionierbetrieb: Antriebsverfahrweg 10 μm/Impuls pro Impuls.

Positionierbetrieb: min. Antriebsverfahrweg 1 µm.

^{*1.} Parameter wird auf den empfohlenen Wert eingestellt. Parameter entsprechend der Kundenanwendung einstellen.

^{*2.} Abhängig von der Form oder Ausrichtung des Werkstücks können mechanische Resonanzen auftreten.

Diesen Parameter bei der Erstkonfiguration ändern.

^{*4.} Bei einer Motor-Einbaulage rechte Seite parallel (LEY*R/LEYG*R) oder linke Seite parallel (LEY*L/LEYG*L) ist die Drehrichtung.

				LE	Y63			LEY63D			
	Steigu	ngssymbol	Α	В	С	L	Α	В	С		
Serie	(Inl	eigung klusive ibersetzung)	20	10	5	5(2,86) (Riemen- überset- zung 4/7)	20	10	5		
Parameter *1,*2	Param Nr.	Anfangs- wert	Empfohlener Wert								
Anzahl der Eingangsimpulsbefehle pro Umdrehung *3	PA05	100	100								
Zähler elektronisches Getriebe *3	PA06	1		100 (10)		35 (7)		100 (10)			
Nenner elektronisches Getriebe *3	PA07	1	20	10	5	1 (2)	20	10	5		
Multiplikation Vorschublänge (STM) (Faktor)	PE02	0000		000	00 (<1000 l	Hübe)/0001	(>1000 Hü	ibe)			
Ausführung Rückstellung in Ausgangsposition	PE03	0010	□□□3 (Anschlagausführung)								
Richtung Rückstellung in Ausgangsposition	PE03	0010	□□1□ (Motorseite)								
Richtung Rückstellung in Ausgangsposition Drehzahl (U/min)	PE04	500	90	180	360	629	90	180	360		
Konstanten für Rückstellung in Ausgangsposition/ JOG-Betrieb Beschleunigungs-/ Verzögerungszeit (ms)	PE07	100	1.000	500	250	143	1.000	500	250		
Positionsdaten Rückstellung in Ausgangsposition (µm)	PE08	0		-40	00 (<1000	Hübe)/-400	(>1000 Hi	ibe)			
Rückstellung in Ausgangsposition Anschlagausführung Anschlagzeit (ms)	PE10	100				200					
Rückstellung in Ausgangsposition Anschlagausführung Drehmoment- grenzwert (%)	PE11	15	30								
Regenerationsoption	PA02	000		000 (Non)/	002 (LEC-N	/IR-RB-032)	/003 (LEC	-MR-RB-12	2)		
Auswahl Drehrichtung *4	PA14	0			0 -Motorseite			1 egen-Moto			
adaptive Einstellungsfunktion	PB01	000				000					
Motorlast Trägheitsmoment	PB06	7				7					
Maschinen-Vibrations- Unterdrückung 1	PB13	4500				4500					
Kerbformauswahl 1	PB14	000				000					

abweichend vom Ausgangswert

^{*1.} Parameter wird auf den empfohlenen Wert eingestellt. Parameter entsprechend der Kundenanwendung einstellen.

^{*2.} Abhängig von der Form oder Ausrichtung des Werkstücks können mechanische Resonanzen auftreten. Diesen Parameter bei der Erstkonfiguration ändern.

(Parameter Erstkonfiguration ⇒ empfohlenen Parameterwert einstellen ⇒ Start)

*3. Außer Positionierbetrieb: Antriebsverfahrweg 10 µm/Impuls pro Impuls.

Positionierbetrieb: min. Antriebsverfahrweg 1 µm.

^{*4.} Bei einer Motor-Einbaulage rechte Seite parallel (LEY*R/LEYG*R) oder linke Seite parallel (LEY*L/LEYG*L)) ist die Drehrichtung 0 (+: Gegen-Motorseite).

5.3.5 Elektronische Getriebe

Das elektronische Getriebe zur Umwandlung des Impulsbefehls zum Verfahrweg, das von der Positionseinheit an den elektrischen Antrieb gesendet wird, muss eingestellt werden.

Siehe LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 5.3.4, hinsichtlich empfohlener Parameterwerte der elektronischen Getriebe für jedes Antriebsmodell.

Die Parameter je nach Kundenanwendung konfigurieren.

(1) Parameterkonfiguration LECSA: [PA05], [PA06] und [PA07]

		Parameter					Steue	ermodus	
Nr.	Symbol	Bezeichnung	Anfangs- wert	Einstell- bereich	Einheit	Position	interne Ge- schwin- dig- keit	internes Dreh- moment	Positionie- rung
PA05	*FBP	Anzahl der Impulseingangsbefehle pro Umdrehung	100	0 * 100 bis 500	× 100 Impulse/U	0			0
PA06	CMX	Zähler elektronisches Getriebe (Zähler Multiplikationsfaktor Impulsbefehl)	1	1 bis 65.535		0			0
PA07	CDV	Nenner elektronisches Getriebe (Nenner Multiplikationsfaktor Impulsbefehl)	1	1 bis 65.535		0			0

(1) Vollständige Konfiguration, wie unten dargestellt.

Beispiel:

Verfahrweg pro Impulsbefehl
$$\mu$$
m (P=10 μ m)
Antriebssteigung (L = 6 mm)
Riemenübersetzung (n1/n2 = 1/1)

$$[PA05] = 100 \text{ (Anfangswert)}$$

$$[PA06] = \frac{100 \times 100 \times 10 \times \frac{1}{1.000}}{6 \times 1/1} = \frac{100 \times 100 \times 0,01}{6}$$

$$[PA07] = \frac{100}{6}$$

$$[PA07] = \frac{100}{6}$$

^{*1} Für den Positionssteuerungsmodus beträgt "Verfahrweg pro Impulsbefehl" P = 10 μm. Für den Positionierbetrieb beträgt "Verfahrweg pro Impulsbefehl" P = 1 μm.

^{*2} Siehe LECSA-Bedienungsanleitung (vereinfachte Ausführung), Kapitel 5.3.4, hinsichtlich Riemenübersetzung. Für Antriebe ohne Angaben zur Riemenübersetzung wird diese 1/1 angesetzt.

5.3.6 Auswahl Steuerungsmodus

① Zur Verwendung des <u>Positionssteuerungsmodus (Impulseingang)</u> den Reiter "Basic" im Fenster "Parameter Setting" klicken - "Control mode selection" - "Position control mode" auswählen. (Der Parameter "PA01" in der angezeigten Liste im Reiter "Basic" nimmt den Wert "000" an.)

Zur Verwendung des <u>Positionierbetriebs (Punktetabelle)</u> "Basic" im Fenster "Parameter Setting" klicken - "Control mode selection" - "Positioning mode" auswählen. (Der Parameter "PA01" in der angezeigten Liste im Reiter "Basic" nimmt den Wert "006" an.)

- 2 Auf "Single Axis Write" klicken.
- 3 Auf "OK" klicken.
- 4 Auf "OK" klicken. Nach Aus- und Einschalten der Spannungsversorgung sind die Parameteränderungen übernommen.

5.3.7 Parameter Eingangsimpulsbefehl einstellen

Bei Verwendung des Positionssteuerungsmodus (Impulseingang) ist die Form des Eingangsimpulsbefehls in Abhängigkeit der Impulsfolge der obigen Einheit einzustellen.

- Eingangsform (3 Formen)
 - 1 Impulsfolge Vorwärtsdrehung / Impulsfolge Rückwärtsdrehung
 - ② Impulsfolge / Impulsfolge Richtungsphase / Impulsfolge B-Phase
 - 3 Impulsfolge A-Phase / Impulsfolge B-Phase
- · Logik (2 Arten)
 - 1 Positivlogik
 - ② Negativlogik
- Eingangsform (3 Impulsformen) x Positiv-/Negativlogik (2 Arten) = 6 Auswahlmöglichkeiten

Für das Positioniermodul existiert ein Parameter zur Einstellung der Ausgangsimpulsform (Modus). Die Form des Positioniermoduls muss mit LECSA kompatibel sein. Sind die Formen nicht kompatibel, können Fehlfunktionen auftreten. Bitte beachten, dass in Abhängigkeit des Positioniermoduls die obigen "Eingangsimpulsbefehlsformen" nicht verfügbar sind.

Beispiel: Einstellung einer Eingangsimpulsbefehlsform wenn:

- (1) die Impulsbefehlsfrequenz max 200 kpps beträgt, und
- (2) eine Impulsfolge mit Positivlogik und hohem und niedrigem NP-Signal definiert wird.

[PA13] = 201

- ① Im Reiter "Basic" "PA13" auf "201" setzen.
- 2 Auf "Single Axis Write" klicken.
- 3 Schalten Sie die Spannungsversorgung aus und wieder ein. Der Parameter ist übernommen.

5.4 JOG-Modus in der Konfigurationssoftware

- ① Durch Auswahl von "JOG Mode" im Menü "Test Mode" in der **Konfigurationssoftware** wird das "Jog Mode"-Fenster angezeigt.
- 2 Auf "OK" klicken.

(Bei Verwendung dieser Funktion werden alle externen Signale deaktiviert. Wenn eine SPS oder ein anderes übergeordnetes Gerät verwendet wird, dieses vor Verwendung ausschalten und zurücksetzen.

5.4.1 JOG-Modus

- ① Um einen unerwünschten Aufprall am Ende des Hubes zu vermeiden, sollte der Antrieb mit geringer Geschwindigkeit geprüft werden. Siehe LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 5.6.2, hinsichtlich Konfiguration der Motordrehzahl. Siehe LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 5.6.3, hinsichtlich Beschleunigungs-/Verzögerungszeit.
- ② Die Prüfung des Antriebs im JOG-Betrieb erfolgt anhand [Forward (CCW)] und [Reverse (CW)]. (Bei nicht korrektem Betrieb Verdrahtung und Parameter prüfen). Bei einem JOG-Betrieb über die Konfigurationssoftware hat der Parameter PA14 (Auswahl Drehrichtung) keinen Einfluss auf die Drehrichtung. Der Antrieb bewegt sich in Richtung [Forward (CCW)]-Taste (vorwärts) und [Reverse (CW)]-Taste (rückwärts).
- ③ Ist "LSP and LSN are automatically turned ON" (LSP und LSN automatisch ON) nicht markiert, wird ein Alarm ausgelöst. Ist diese Option markiert, werden die Hubendesignale LSP und LSN automatisch auf ON gesetzt, wenn dieses Fenster geöffnet ist.

Position	Einstellbereich	Einheit	Beschreibung
Motordrehzahl	0 ~ zulässige Antriebsgeschwindigkeit	U/min	Einstellung der Sollgeschwindigkeit des Servomotors für den Positionierbetrieb (Motordrehungen/Minute).
Beschleunigungs-/ Verzögerungszeit	0 bis 50.000	ms	Zeit, innerhalb derer der Servomotor die Nenngeschwindigkeit erreicht/anhält (3.000 U/min).

5.5 Änderung der I/O-Signal-Zuweisung

Die Zuweisung der Ein-/Ausgangssignale kann nach Erfordernis geändert werden.

In bestimmten Fällen kann eine Änderung der Ein-/Ausgangssignal-Zuweisung für den Betrieb des Antriebs erforderlich sein.

Bitte beachten, dass hierdurch die Signal-Anfangseinstellungen geändert werden.

Nehmen Sie die Zuordnung entsprechend Ihrer Systemspezifikation vor.

* Wenn PD** konfiguriert wird, "parameter write inhibt" [PA19] auf 00E setzen.

Siehe LECSA-Bedienungsanleitung, Kapitel 4.4 für weitere Informationen.

I/O-Parameter einstellen: PD02 bis PD18.

Eingangssignalzuweisung PD02 bis PD14 (CN1-23, CN1-25, CN1-3 bis CN1-8) Ausgangssignalzuweisung PD15 bis PD18 (CN1-9 bis CN1-12)

5.5.1 Parameterkonfiguration Auswahl automatisches Eingangssignal ON

Zur Konfiguration des Parameters für Auswahl des automatischen Eingangssignals ON.

Der Parameter "PD01: Input signal automatic ON selection" definiert, welche Eingangssignale beim Einschalten der Spannungsversorgung automatisch auf ON gesetzt werden. Dies ermöglicht auch eine zusätzliche I/O-Signalbereichsauswahl.

Nehmen Sie die Zuordnung entsprechend Ihrer Systemspezifikation vor.

Konfigurieren Sie die Auswahl automatisch ON über den Parameter [PD01] oder konfigurieren Sie das Signallayout.

Wenn das Verdrahtungsschema der I/O-Signale geändert wird, "PD01: Input signal automatic ON selection" nicht konfigurieren.

* Wenn alle I/O-Signale gesteuert werden, PD01 auf "0000" setzen.

"PD01: Input signal automatic ON selection" mit hexadezimalen (HEX) Werten konfigurieren.

Bina	iry ni	umbe	<u> :r -></u>	Decimal / Hex	ade cimal
Bin	ary i	numb	er	Decimal	Hexade cimal
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	2	2
0	0	1	1	3	3
0	1	0	0	4	4
0	1	0	1	5	5
0	1	1	0	6	6
0	1	1	1	7	7
1	0	0	0	8	8
1	0	0	1	9	9
1	0	1	0	10	А
1	0	1	1	11	В
1	1	0	0	12	С
1	1	0	1	13	D
1	1	1	0	14	E
1	1	1	1	15	F
				_	_

Während des Antriebsbetriebs: Signale, die während des Antriebsbetriebs auf ON sein müssen. PD01 auf "0C24" setzen. Folgende Signale werden automatisch nach Einschalten der Spannungsversorgung auf ON gesetzt.

SON	Servo-on	OFF: Servo-off
		ON : Servo-on (betriebsfähig)
LSP	Hubende Vorwärtsdrehung	OFF: Hubende Vorwärtsdrehung
	(Öffner-Kontakt)	ON : Hubende Vorwärtsdrehung OFF (betriebsfähig)
LSN	Hubende Rückwärtsdrehung	OFF: Hubende Rückwärtsdrehung
	(Öffner-Kontakt)	ON: Hubende Rückwärtsdrehung OFF (betriebsfähig)
EM1	Erzwungener Stopp	OFF : erzwungener Stopp
	(Öffner-Kontakt)	ON : erzwungener Stopp (betriebsfähig)

Im Positioniermodus (Punkte-Tabelle) wird der Betriebsmodus mithilfe der Auswahl automatisch/manuell <u>MD0</u> konfiguriert.

Die Auswahl MD0 Off ermöglicht den JOG-Betrieb und erfordert einen spezifischen Eingang für MD0.

Für MD0 im Automatikbetrieb PD01 auf "0C25" setzen. Dies beinhaltet auch MD0 automatisch ON.

MD0	Auswahl automatisch/manuell	OFF: manueller Betriebsmodus
		→ JOG-Betrieb möglich.
		ON: automatischer Betriebsmodus
		→ Rückstellung zur Ausgangsposition/Positionierbetrieb möglich.

* Freigabe Signale "Stroke end" (LSP, LSN) (Hubende), "Forced stop" (EM1) (erzwungener Stopp) und "Servo-on" (SON)

- 1 Im I/O-Reiter PD01 zu "0C24" setzen.
- 2 Auf "Single Axis Write" klicken.
- 3 Spannungsversorgung aus- und wieder einschalten, damit die geänderten Parameter übernommen werden.
- * In dieser Konfiguration werden die Signale Hubende (LSP, LSN), erzwungener Stopp (EM1) und Servo-on (SON) auf ON gesetzt, sobald die Spannungsversorgung eingeschaltet wird.

5.5.2 Anfangszuweisung I/O-Signale

(1) Positionssteuerungsmodus (Impulseingang):

Die Anfangszuweisung (voreingestellt) ist nachfolgend aufgeführt.

Eingangssignalzuweisung PD03 bis PD14 (CN1-3 bis CN1-8) Ausgangssignalzuweisung PD15 bis PD18 (CN1-9 bis CN1-12)

Eingangssignalpunkte (6): (Positionssteuerungsmodus) und Anfangszuweisung

Device	Symbol	Connec-	I/O	Parameters	Initial
Sevice	Cymbol	tor pin No	division	No.	value
Reset	RES	CN1-3	DI-1	PD03	0303
Servo-on	SON	CN1-4	DI-1	PD05	0202
Clear	CR	CN1-5	DI-1	PD07	0D08
Forward rotation stroke end	LSP	CN1-8	DI-1	PD09	070A
Reverse rotation stroke end	LSN	CN1-7	DI-1	PD11	080B
Forced stop	EM1	CN1-8	DI-1	PD13	0505

Ausgangssignalpunkte (4): (Positionssteuerungsmodus) und Anfangszuweisung

Device	Symbol	Connec	1/0	Parameters	Initial
	-	tor pin No	division	No.	value
Trouble	ALM	CN1-9	DO-1	PD15	0003
In-position	INP	CN1-10	DO-1	PD16	0004
Ready	RD	CN1-11	DO-1	PD17	0002
Electromagnetic brake interlock	MBR	CN1-12	DO-1	PD18	0005

Siehe LECSA-Bedienungsanleitung, Kapitel 3.5, und LECSA-Bedienungsanleitung, Kapitel 3.6, für weitere Informationen zu Signalen.

Siehe LECSA-Bedienungsanleitung, Kapitel 4.4.2 für Werte zur Parameterkonfiguration.

- Pins CN1-23 und CN1-25 sind Impulseingangsklemmen. Diesen k\u00f6nnen keine anderen Eingangssignale zugewiesen werden.
- W Den Pins CN1-3 bis CN1-8 (Eingangssignale) und CN1-9 bis CN1-12 (Ausgangssignale) können Stromsenkenschnittstellen (NPN) und Stromquellenschnittstellen (PNP) und I/O-Signale zugewiesen werden.

(2) Positionierbetrieb:

Die Anfangszuweisung der I/O-Signale ist unten aufgeführt.

Eingangssignalzuweisung PD02 bis PD14 (CN1-23, CN1-25, CN1-3 bis CN1-8) Ausgangssignalzuweisung PD15 bis PD18 (CN1-9 bis CN1-12)

Eingangssignalpunkte (8): (Positionierbetrieb) und Anfangszuweisung

Device	Symbol	Connec-	I/O	Parameters	Initial
5552	Cy	tor pin No	division	No.	value
Forced stop	EM1	CN1-8	DI-1	PD14	0505
Proximity dog	DOG	CN1-25	DI-1	PD02	262D
Servo-on	SON	CN1-4	DI-1	PD08	0202
Automatic /manual selection	MD0	CN1-3	DI-1	PD04	2003
Forward rotation start	ST1	CN1-8	DI-1	PD10	0707
Reverse rotation start	ST2	CN1-7	DI-1	PD12	0808
Point table No. /Program No. selection 1	DIO	CN1-5	DI-1	PD08	2C0D
Point table No. /Program No. selection 2	DI1	CN1-23	DI-1	PD02	262D

Ausgangssignalpunkte (4): (Positionierbetrieb) und Anfangszuweisung

Device	Symbol	Connec	1/0	Parameters	Initial
		tor pin No	division	No.	value
Trouble	ALM	CN1-9	DO-1	PD15	0003
In-position	INP	CN1-10	DO-1	PD16	0004
Ready	RD	CN1-11	DO-1	PD17	0002
Electromagnetic brake interlock	MBR	CN1-12	DO-1	PD18	0005

Siehe LECSA-Bedienungsanleitung, Kapitel 13.2.3 für weitere Informationen zu Signalen. Siehe LECSA-Bedienungsanleitung, Kapitel 4.4.2 für weitere Informationen zu Parameterwerten.

- Den Pins CN1-23 und CN1-25 k\u00f6nnen nur Stromsenkenschnittstellen (NPN) und I/O-Signale zugewiesen werden.
- Den Pins CN1-3 bis CN1-8 (Eingangssignale) und CN1-9 bis CN1-12 (Ausgangssignale) können Stromsenkenschnittstellen (NPN) und Stromquellenschnittstellen (PNP) und I/O-Signale zugewiesen werden.

5.5.3 Signalzuweisung mit Konfigurationssoftware

- ① Durch Auswahl von "Parameter list" im Menü "Parameters" in der Konfigurationssoftware erscheint das Fenster "Parameter Setting".
- ② Auf den I/O-Reiter klicken.
- ③ Nach einer Zuweisungsänderung der Signale können die Parameter PD02 bis PD18 angepasst werden.

5.5.4 Beispiele zur Zuweisung im Positionssteuerungsmodus (Impulseingang)

(1) Beispiel Einstellungen Verstärkungsschalter (CDP)

Wechsel des Pins CN1-4 von Servo-on (SON) zu Verstärkungsschalter (CDP).

Device	Symbol	Connec- tor pin No	I/O division	Parameters No.	Initial value		Device	Symbol	Connec- tor pin No	ı	Parameters No.	Initial value
Reset	RES	CN1-3	DI-1	PD03	0303		Reset	RES	CN1-3	DI-1	PD03	0303
Servo-on	SON	CN1-4	DI-1	PD05	0202		Gain changing	CDP	CN1-4	DI-1	PD05	0202→ 0211
Clear	CR	CN1-5	DI-1	PD07	0D06		Clear	CR.	CN1-5	DI-1	PD07	0D08
	LSP	CN1-8	DI-1	PD09	070A		Forward rotation stroke end	LSP	CN1-8	DI-1	PD09	070A
	LSN	CN1-7	DI-1	PD11	080B		Reverse rotation stroke end	LSN	CN1-7	DI-1	PD11	080B
Forced stop	EM1	CN1-8	DI-1	PD13	0505		Forced stop	EM1	CN1-8	DI-1	PD13	0505
	Reset Servo-on Clear Fonward rotation stroke end Reverse rotation stroke end Forced stop	Servo-on SON Clear CR Forward rotation stroke LSP end Reverse rotation stroke LSN end	Servo-on SON CN1-4 Clear CR CN1-5 Forward rotation stroke end LSP CN1-8 Reverse rotation stroke end LSN CN1-7	Servo-on SON CN1-4 DI-1 Clear CR CN1-5 DI-1 Forward rotation stroke end LSP CN1-8 DI-1 Reverse rotation stroke end LSN CN1-7 DI-1	Servo-on SON CN1-4 DI-1 PD05 Clear CR CN1-5 DI-1 PD07 Forward rotation stroke end LSP CN1-8 DI-1 PD09 Reverse rotation stroke end LSN CN1-7 DI-1 PD11	Servo-on SON CN1-4 DI-1 PD05 0202 Clear CR CN1-5 DI-1 PD07 0D08 Forward rotation stroke end LSP CN1-8 DI-1 PD09 070A Reverse rotation stroke end LSN CN1-7 DI-1 PD11 080B	Servo-on	Servo-on SON CN1-4 DI-1 PD05 0202 Gain changing	Servo-on SON CN1-4 DI-1 PD05 0202 Gain changing CDP Clear CR CN1-5 DI-1 PD07 0D06 Clear CR Forward rotation stroke end LSP CN1-8 DI-1 PD09 070A Forward rotation stroke end LSP end Reverse rotation stroke end LSN CN1-7 DI-1 PD11 080B Reverse rotation stroke end LSN end	Servo-on	Servo-on SON CN1-4 DI-1 PD05 0202 Gain changing CDP CN1-4 DI-1	Servo-on SON CN1-4 DI-1 PD05 O202 Gain changing CDP CN1-4 DI-1 PD05

Änderung von PD05 von 0202 zu 0211

		L		
		Contra	ol modes (I	Note 1)
Setting	Р	S	T	CP/CL
00	/	_	/	
01		For manufa	acturer sett	ting (Note 2)
02	SON	SON	SON	SON
03	RES	RES	RES	RES
04	PC	PC	/	PC
05 (Note4)	EM1	EM1	EM1	EM1
06	CR			
07	/	ST1	RS2	ST1
08		ST2	RS1	ST2
09	TL1	TL1	/	TL1
0A	LSP	LSP		LSP
0B	LSN	LSN	/	LSN
0C	-	For manufa	acturer sett	ting (Note 2)
0D		SP1	SP1	
0E		SP2	SP2	
0F	/	SP3	SP3	
10	LOP	LOP	LOP	
11	CDP	CDP		CDP
12 to 1F		or manufa	acturer sett	ting (Note 2)
20	/			MD0
21 to 23				For manufacturer setting (Note 2)
24	/	/		TSTP
25				For manufacturer setting (Note 2)
26	/	/		DOG
27				PI1(注 3)
28 to 2B				For manufacturer setting (Note 2)
2C				DI0
2D				DI1
2E				DI2
2F to 3F				For manufacturer setting (Note 2)

Note 1. P: Position control mode

- S: Internal speed control mode T: Internal torque control mode

- I: internal torque control mode
 CP:Positioning mode (Point table method)
 CL:Positioning mode (Program method)
 2. For manufacturer setting. Never set this value.
 3.It is valid in the positioning mode (Program method) only.
 4.When operating temporarily without using EM1 such as at startup, etc., set the EM1 to automatic ON in parameter No.PD01.

- (2) Symbolzuweisung mithilfe der Konfigurationssoftware: Wechsel der Pins CN1 4 von Servo-on (SON) zu Verstärkungschalter (CDP):
 - ① Im I/O-Reiter PD05 von 0202 zu 0211 ändern.
 - ② Auf "Single Axis Write" klicken.
 - Spannungsversorgung aus- und wieder einschalten, damit die geänderten Parameter übernommen werden.

- Werstärkungsschalter Pins CN1-4 gesondert zuweisen.
- X Siehe LECSA-Bedienungsanleitung, Kapitel 4.4.2 hinsichtlich Details zur Zuweisung von Eingangssignalen an die Pins CN1-9 bis CN1-12
- Siehe LECSA-Bedienungsanleitung, Kapitel 4.4.2 hinsichtlich Details zur Zuweisung von Eingangssignalen an die Pins CN1-3 bis CN1-8.

5.5.5 Einstellung von max. 7 Punkten mithilfe der Punkte-Tabelle im Positionierbetrieb (Punkte-Tabelle)

Die Punkte-Tabelle kann bis zu 7 Punkte unter Verwendung der Eingangssignale DI0, DI1 und DI2 enthalten.

Device	Symbol	Connector pin No.					Functions/Applications		I/O division	Positi mo	de
			L							CP	CL
Point table No.	DIO	CN1-5	<	In poi	nt tab	le me	thod>		DI-1	0	0
/Program No.			'	The p	oint t	able N	lo. and the home position return	mode are selected			
selection 1				by DI	0 to D	12.					
			<	In pro	gram	meth	od>				
				The p	rogra	m No	is selected by DI0 to DI2.				
			I	(No	te) De	wice	Selection description	l			
Point table No.	DI1	CN1-23		_	DI1	_	Point table method		DI-1	0	0
/Program No.				0	0	0	Home position return mode				
selection 2				0	0	1	Point table No. 1				
				0	1	0	Point table No. 2				
				0	1	1	Point table No. 3				
				1	0	0	Point table No. 4				
Point table No.	DI2		П	1	0	1	Point table No. 5		DI-1	Δ	\triangle
/Program No.			П	1	1	0	Point table No. 6				
selection 3		\		1	1	1	Point table No. 7				
			•	Note.	0: of		_				
		\			1: on						

Die Signale DI0 und DI1 sind werkseitig jeweils CN1-5 und CN1-23 zugeordnet. Anm.: CN1-23 kann nur verwendet werden, wenn der Eingang als Stromsenke konfiguriert ist.

Es können 4 Punkte spezifiziert werden, jedoch ist ein Punkt für die Rückstellung in die Ausgangsposition reserviert, sodass 3 Punkte in der Punkte-Tabelle spezifiziert werden können.

Bei Verwendung von bis zu 7 Punkte-Tabellen müssen die Verdrahtung und die Eingangssignalzuweisung von DI2 vorgenommen werden.

(1) Beispiel einer Zuweisung von max. 7 Punkten als Stromsenkenschnittstelle (NPN)

Änderung Pin CN1-7 von Start Rückwärtsdrehung (ST2) zu Punkte-Tabelle-Nr./ Programm-Nr. 3 (DI2):

Device	Symbol	Connec-	I/O division	Parameters No	Initial value			Device	۱۶	Symbol	Connec-	I/O division	Parameters	
orced stop	EM1	tor pin No CN1-8	division DI-1	No. PD14	0505		Forced s	stop	-+	EM1	tor pin No CN1-8	division DI-1	No. PD14	
Proximity dog	DOG	CN1-25	DI-1	PD02	262D		Proximi	tv dog		DOG	CN1-25	DI-1	PD02	\vdash
Servo-on	SON	CN1-4	DI-1	PD06	0202		Servo-o			SON	Note)	DI-1	PD06	
Automatic manual selection	MDO	CN1-3	DI-1	PD04	2003		Automa /manua	tic I selection		MDO	CN1-3	DI-1	PD04	
orward rotation start	ST1	CN1-6	DI-1	PD10	0707		Forward	rotation st.	art	ST1	CN1-6	1-6 DI-1	PD10	
Reverse rotation start	ST2	CN1-7	DI-1	PD12	0808	→	Point ta /Progran	ble No. n No. selec	tion 3	DI2	CN1-7	DI-1	PD12	
oint table No. Program No. selection 1	טוט	CN1-5	DI-1	PD08	2000			pie No. π No. selec	tion 1	DIO	CN1-5	DI-T	F 008	f
oint table No. Program No. selection 2	DI1	CN1-23	DI-1	PD02	262D		Point ta			DI1	CN1-23	DI-1	PD02	
① DD40	0000	OF	- 00 #		•								•	
① PD12 von	UOU	2u ZE	_uo a	nuem.			Setting			ntrol m	odes (Note			
		e selection				0808h	00	P	S		T	CP/C	iL.	
	_		-	ne CN1-7 pin.			01		For man	ufactur	rer setting	(Note 2)		
	The devices that can be assigned and the setting method are same as in parameter No. PD03. 2 E Internal torque control mode Positioning mode Select the input device of the CN1-7 pin.				netnog are the		02	SON	SON	$\overline{}$	ON	SOI	N	
							03	RES	RES	F	RES	RE		
							04 05	PC	PC	+		PC		
					put device		(Note4)	EM1	EM1		M1	EM	1	
					the CN1- pin.		06 07	CR	ST1		RS2	ST	1	
							08		ST2	_	RS1	ST		
-							09	TL1	TL1			TL		
							0A	LSP	LSP	_		LSF	•	
							0B	LSN	LSN			LSI	N	
							OC OD		For man SP1	_	rer setting SP1	(Note 2)		
			`				0E		SP2	_	SP2	_		
							0F		SP3		SP3	_		
							10	LOP	LOP	L	.OP	_		
							11	CDP	CDP	/	_	CDI	P	
				,			12 to 1F		For man	ufactur	rer setting			
							20 21 to 23				F	MD or manu		
							24					setting (N TST		
							25					or manus	facturer	
							26					DO		
							27					PI1(注		
							28 to 2B					or manus setting (N		
							2C					DIC	_	_
						'	2D					DI1		
							2E			_	_	DI2	2	
							T: CF CL 2. Fo 3.lt is 4.Wh	Internal sp Internal to P:Positioning:Positioning manufacts and in the nen operat	peed con rque con ng mode ng mode turer set ne positio ing temp	ntrol mo ntrol mo (Point (Progr tting. N oning n oorarily	ode table met am metho lever set th node (Prog	od) nis value. gram met sing EM1	thod) only. such as at	

- (2) Beispiel einer Zuweisung von max. 7 Punkten in aktueller Quellenschnittstelle (PNP)
 - ① Änderung Pin CN1-3 von Auswahl manuell/automatisch (MD0) zu Punkte-Tabelle-Nr./ Programm-Nr. 3 (DI2):
 - Änderung Pin CN1-7 von Start Rückwärtsdrehung (ST2) zu Punkte-Tabelle-Nr./ Programm-Nr. Auswahl 2 (DI1):

- (3) Beispiel einer Signalzuweisung mithilfe der Konfigurationssoftware Bei Änderung der Pins CN1-7 von Start Rückwärtsdrehung (ST2) zu Punkte-Tabelle-Nr./ Programm-Nr. Auswahl 3 (DI2):
 - ① Im I/O-Reiter PD12 von 0808 zu 2E08 ändern.
 - ② Auf "Single Axis Write" klicken.
 - 3 Spannungsversorgung aus- und wieder einschalten, damit die geänderten Parameter übernommen werden.

- * Pin-Zuweisung CN1-7 separat vornehmen.
- * Siehe LECSA-Bedienungsanleitung, Kapitel 4.4.2 hinsichtlich Details zur Zuweisung von Eingangssignalen an die Pins CN1-3 bis CN1-8
- * Siehe LECSA-Bedienungsanleitung, Kapitel 4.4.2 hinsichtlich Details zur Zuweisung von Eingangssignalen an die Pins CN1-23 und CN1-25
- * Siehe LECSA-Bedienungsanleitung, Kapitel 4.4.2 hinsichtlich Details zur Zuweisung von Eingangssignalen an die Pins CN1-9 bis CN1-12

In den Schemata sind typische 3-Punkt-Positionierungen dargestellt.

5.5.6 Prüfung der Zuweisung der I/O-Signale

Es können der ON/OFF-Zustand (einschließlich Layoutprüfung) und die an CN1 zugewiesenen Signalnamen geprüft werden. Wenn die Parameter PD02 - PD18 geändert wurden, ist die korrekte Zuweisung dieser Parameter zu bestätigen.

① Dies erfolgt über "I/O Monitor" im Menü "Monitor" in der Konfigurationssoftware. Es öffnet sich das Fenster "I/O Monitor", in dem die verwendbaren Ein- und Ausgänge angezeigt werden. In diesem Fenster wird auch der verwendbare Modus (MODE) angezeigt. Die farblich hinterlegten Felder stellen die aktiven Signale dar.

Positionierbetrieb (Punkte-Tabelle)

5.6 Positionierbetrieb mit Konfigurationssoftware

- ① Aus dem Menü "Test" in der Konfigurationssoftware "Positioning Mode" wählen. Es öffnet sich das Fenster "Move Distance Unit Selection" (Auswahl Verfahrweg Einheit).
- ② "Command pulse unit" (elektronisches Getriebe gültig) markieren und "OK" drücken. Damit wird das in den Parametern PA05, PA06 und PA07 eingegebene Übersetzungsverhältnis des elektronischen Getriebes aktiviert.
- ③ Auf "OK" klicken. Bei Verwendung dieser Funktion wird der Betrieb über externe Signale deaktiviert. Wenn die Steuerung über eine SPS oder ein übergeordnetes Gerät erfolgt, muss die Spannungsversorgung aus- und wieder eingeschaltet werden.
- 4 Es öffnet sich das Fenster für Positionierbetrieb ("Positioning Mode").

5.6.1 Positionierbetrieb

- ① Um einen unerwünschten Aufprall am Ende des Hubes zu vermeiden, sollte der Antrieb mit geringer Geschwindigkeit betrieben werden. Wenn die Geschwindigkeit oder Bewegung geändert wird, Änderungen im Betrieb überprüfen (Änderung von Geschwindigkeit, Beschleunigungs-/Verzögerungszeit, Verfahrwege usw.)
 - Siehe LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 5.6.2, hinsichtlich Konfiguration der Motordrehzahl.
 - Siehe LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 5.6.3, hinsichtlich Konfiguration der Beschleunigungs-/Verzögerungszeit.
 - Siehe LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 5.6.4, hinsichtlich Konfiguration des Verfahrwegs.
- ② Der Antrieb wird anhand [Forward (CCW)] und [Reverse (CW)] betrieben. (Bei nicht korrektem Betrieb Verdrahtung und Parameter prüfen.) Bei einem Positionierbetrieb über die Konfigurationssoftware hat der Parameter PA14 (Auswahl Drehrichtung) keinen Einfluss auf die Drehrichtung.Der Antrieb bewegt sich in Richtung [Forward (CCW)]-Taste (vorwärts) und [Reverse (CW)]-Taste (rückwärts).
- ③ "Command pulse unit" (elektronisches Getriebe) gültig markieren. Es wird das in den Parametern PA05, PA06 und PA07 bestimmte Getriebeverhältnis aktiviert.

Siehe LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 5.3.4 "Parameterwerte je Antriebsmodell", hinsichtlich PA05, PA06 und PA07 für jedes Antriebsmodell. Wenn die Werte PA05, PA06 und PA07 den Angaben in der LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 5.3.4 "Parameterwerte je Antriebsmodell", entsprechen, berechnet sich der Verfahrweg des Antriebs pro Impuls wie folgt.

[Positionssteuerungsmodus (Impulseingang)]

Verfahrweg des Antriebs pro Impuls = 10

µm (0,01 mm)

[Positionierbetrieb]

- Verfahrweg des Antriebs pro Impuls = 1 μm (0,001 mm)
 - Wenn die Signale "Stroke-end" (Hubende, LSP, LSN) nicht auf ON gesetzt sind, wird ein Alarm ausgelöst. (Wenn diese Signale markiert sind, wird "Stroke-end" (LSP, LSN) automatisch auf ON gesetzt, sobald dieses Fenster geöffnet wird.

Position	Einstellbereich	Einheit	Beschreibung
Motordrehzahl	0 bis zulässige Ge- schwindigkeit je Antrieb	U/min	Einstellung der Sollgeschwindigkeit des Servomotors für den Positionierbetrieb (Motordrehungen/min).
Beschleunigungs-/ Verzögerungszeit	0 bis 50.000	ms	Zeit, innerhalb derer der Servomotor die Nenngeschwindigkeit erreicht/anhält (3.000 U/min).
Verfahrweg	0 bis 2.147.483.647	Impulse	Einstellung des Verfahrwegs

5.6.2 Vorgehensweise Parameterkonfiguration

Konfiguration Drehgeschwindigkeit

Konfiguration Motordrehzahl (U/min)
 *U/min: angezeigte Motordrehzahl

Die Drehzahl muss zwischen 0 und der zulässigen Drehzahlgrenze des jeweiligen Antriebs liegen. Wenn dieser Wert auf 0 gesetzt wird, dreht sich der Antrieb nicht.

Bei Eingabe von sehr kleinen Drehzahlen können Schwingungen verursacht werden. Antrieb nach vorgenommenen Einstellungsänderungen überprüfen.

Die Lineargeschwindigkeit (mm/s) muss in Drehzahl umgerechnet werden (U/min). Die Umrechnungsformel ist nachstehend aufgeführt.

5.6.3 Konfiguration Beschleunigungs-/Verzögerungszeit

Konfiguration Beschleunigungs-/Verzögerungszeit

① Konfiguration Beschleunigungszeit (ms)

Die Beschleunigungs-/Verzögerungszeit legt die Zeit (ms) fest, innerhalb derer eine vorgegebene Drehzahl erreicht wird (3.000 U/min).

Die Beschleunigungs-/Verzögerungszeit muss zwischen 0 und der zulässigen Beschleunigung/ Verzögerung des jeweiligen Antriebs liegen.

Die Beschleunigungs-/Verzögerungszeit muss aus der Beschleunigung/Verzögerung des jeweiligen Antriebs ermittelt werden. Die Umrechnungsformel ist nachstehend aufgeführt.

Beispiel zur Umrechnung der Beschleunigung/Verzögerung eines Antriebs mit 8 mm Steigung und einer Beschleunigung von 3.000 mm/s².

Geschwindigkeit bei einer Motornenndrehzahl von 3.000 U/min.

Beschl.-/Verz.-Zeit (ms) = {Nenndrehzahl (U/min) ÷ 60 (s)} × Gewindesteigung (mm) × 1.000 Anm.)

Beschleunigung/Verzögerung (mm/s²)

* Die Beschleunigungszeit wird in ms gemessen, dies entspricht (s) × 1.000.

Beschleunigungs-/Verzögerungszeit (ms) = {3.000 (U/min) ÷60 (S)} × 8 (mm) × 1.000 3.000 (mm/s²)

= 133 ms

5.6.4 Konfiguration und Betrieb Verfahrweg < Konfiguration Verfahrweg>

Konfiguration und Betrieb Verfahrweg

- ① Verfahrweg [Impuls] einstellen. Wählen Sie einen Wert innerhalb des Hubbereiches.
- Der Antriebs wird anhand [Forward (CCW)] und [Reverse (CW)] betrieben. Die Position, an der sich der Antrieb beim Einschalten der Spannungsversorgung befindet, wird als Ausgangsposition definiert, und der Antrieb bewegt sich entsprechend des angegebenen Verfahrwegs (bei inkorrektem Betrieb Verdrahtung und Parametes überprüfen). Bei einem Positionierbetrieb über die Konfigurationssoftware hat der Parameter PA14 (Auswahl Drehrichtung) keinen Einfluss auf die Drehrichtung des Antriebs. Der Antrieb bewegt sich in Richtung [Forward (CCW)]-Taste (vorwärts) und [Reverse (CW)]-Taste (rückwärts).
- ③ "Command pulse unit" (elektronisches Getriebe gültig) markieren. Es wird das in den Parametern PA05, PA06 und PA07 bestimmte Getriebeverhältnis aktiviert. Siehe LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 5.3.4, hinsichtlich Konfiguration der Werte PA05, PA06 und PA07 für den jeweiligen Antrieb. Wenn die Werte PA05, PA06 und PA07 den Angaben in der LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 5.3.4, entsprechen, berechnet sich der Verfahrweg des Antriebs pro Impuls wie folgt.

[Positionssteuerungsmodus (Impulseingang)]

Verfahrweg des Antriebs pro Impuls = 10 μm (0,01mm)

[Positionierbetrieb]

Verfahrweg des Antriebs pro Impuls = 1 μm (0,001mm)

Der Verfahrweg (mm) muss in einen Verfahrweg pro Impuls umgerechnet werden. Die Umrechnungsformel ist nachstehend aufgeführt.

Nachfolgend ein Beispiel für einen Verfahrweg von 100 mm.

[Positionssteuerungsmodus (Impulseingang)]

Verfahrweg des Antriebs pro Impuls = 0,01 (mm)

100 (mm)/0.01 (mm) = 10.000 (Impulse)

[Positionierbetrieb]

Verfahrweg des Antriebs pro Impuls = 0,001 (mm) *1

100 (mm)/0,001 (mm) = 100.000 (Impuls)

- * Der Verfahrweg des Antriebs pro Impuls wird entsprechend der elektronischen Getriebe (PA05, PA06 und PA07) bestimmt, gemäß den Angaben in der LECSA-Bedienungsanleitung (Vereinfachte Ausgabe), Kapitel 5.3.4 "Empfohlene Parameterwerte je Antriebsmodell".
- Sind die Hubendesignale (LSP, LSN) nicht auf ON gesetzt, wird ein Alarm ausgelöst. Wenn diese Signale markiert sind, werden die Hubendesignale (LSP und LSN) automatisch auf ON gesetzt, sobald dieses Fenster geöffnet wird.
 - * Drehrichtungen [Forward (CCW)] (vorwärts) und [Reverse (CW)] (rückwärts) prüfen. Wenn die Drehrichtung nicht eindeutig bestimmt ist, den Antrieb zur Überprüfung der Drehrichtung langsam mit einem kleinen Verfahrweg laufen lassen.

5.7 Positionierbetrieb (Punkte-Tabelle) mithilfe der Konfigurationssoftware

Diese Funktion ist nur im Positionierbetrieb (Punkte-Tabelle) verfügbar.

Bei Verwendung des Positionierbetriebs (Punkte-Tabelle) zum Positionieren muss die Punkte-Tabelle (Zielposition, Geschwindigkeit, Beschleunigungszeit, Verzögerungszeit, usw.) konfiguriert werden.

5.7.1 Liste der Punkte-Tabelle

- ① Die Liste der Punkte-Tabelle ("Point table list") wird durch Auswahl von "Point Table" im Menüpunkt "Positioning Data" in der Konfigurationssoftware aufgerufen.
- ② "Read": Es werden die Punkte-Tabelle-Daten aus LECSA gelesen und angezeigt.
- ③ "Write All": Es werden die Punkte-Tabelle-Daten an LECSA übermittelt.

5.7.2 Punkte-Tabelle-Daten

Über den Parameter "PE01: Command mode selection" können verschiedene Datenspeichermethoden der Punkte-Tabelle definiert werden.

(1) Wenn der Parameter "PE01: Command mode selection" auf "0000: Absolute value command

system" gesetzt ist.

Position	Einstellbereich	Einheit	Beschreibung
Zielposition	- 999,999 bis 999.999	×10STM mm	 (1) Wenn diese Tabelle als Absolutwertbefehl verwendet wird, Zieladresse (Absolutwert) angeben. (2) Wenn diese Tabelle als Inkrementalwertbefehl verwendet wird, Verfahrweg angeben. Das Zeichen "-" gibt einen Rückwärtsdrehbefehl an. Die Anzahl der Dezimalstellen ändert sich entsprechend STM (Vorschubverstärkung)
Drehgeschwindigkeit	0 bis zulässige Antriebs- geschwindigkeit	U/min	Einstellung der Drehgeschwindigkeit (Motor Umdrehungen/Minute) während der Positionierung.
Konstante für Beschleunigungszeit	0 bis 20.000	ms	Zeit, innerhalb derer der Servomotor die Nenngeschwindigkeit erreicht. (3.000 U/min)
Konstante für Verzögerungszeit	0 bis 20.000	ms	Zeit, innerhalb derer der bei Nenngeschwindigkeit laufende Servomotor anhält. (3.000 U/min)
Verweilzeit	0 bis 20.000	ms	Wenn die Verweilzeit eingestellt und die voreingestellte Zeit nach Durchführung des Positionsbefehls der gewählten Punkte-Tabelle abgelaufen ist, wird der Positionsbefehl der nächsten Punkte-Tabelle ausgeführt. Zur Deaktivierung der Verweilzeit in der Hilfsfunktion "0" einstellen. Für unterschiedliche Geschwindigkeiten in der Hilfsfunktion "1" und für die Verweilzeit "0" einstellen.
Hilfsfunktion	0 bis 3		 Wenn diese Tabelle als Absolutwertbefehl verwendet wird, automatischer Betrieb entsprechend der gewählten Punkte-Tabelle. Betrieb entsprechend der aufeinanderfolgenden Punkte-Tabellen ohne Stopp. Wenn diese Tabelle als Inkrementalwertbefehl verwendet wird, automatischer Betrieb entsprechend der gewählten Punkte-Tabelle. Betrieb entsprechend der aufeinanderfolgenden Punkte-Tabellen ohne Stopp. Wenn eine andere Drehrichtung eingestellt ist, erfolgt eine Bestätigung der Null-Glättung und die Drehrichtung wird anschließend umgekehrt.
Manuf .1 Manuf .2	Nicht ändern.	1 \	Die Eingabe von "1" in der Punkte-Tabelle Nr. 7 führt zu einem Fehler.

(2) Wenn der Parameter "PE01: Command mode selection" auf "0001: Incremental value command

system" gesetzt ist.

Position	Einstellbereich	Einheit	Beschreibung	
Zielposition	0 bis 999.999	×10STM mm	Einstellung des Verfahrwegs. Die Anzahl der Dezimalstellen ändert sich entsprechend STM (Vorschubverstärkung)	
Drehgeschwindigkeit	0 bis zulässige Antriebsgeschwindigkeit	U/min	Einstellung der Drehgeschwindigkeit (Motor Umdrehungen/Minute) während der Positionierung.	
Konstante für Beschleunigungszeit	0 bis 20.000	ms	Zeit, innerhalb derer der Servomotor die Nenngeschwindigkeit erreicht. (3.000 U/min)	
Konstante für Verzögerungszeit	0 bis 20.000	ms	Zeit, innerhalb derer der bei Nenngeschwindigkeit laufende Servomotor anhält. (3.000 U/min)	
Verweilzeit	0 bis 20.000	ms	Wenn die Verweilzeit eingestellt und die voreingestellte Zeit nach Durchführung des Positionsbefehls der gewählten Punkte-Tabelle abgelaufen ist, wird der Positionsbefehl der nächsten Punkte-Tabelle ausgeführt. Zur Deaktivierung der Verweilzeit in der Hilfsfunktion "0" einstellen. Für unterschiedliche Geschwindigkeiten in der Hilfsfunktion "1" und für die Verweilzeit "0" einstellen.	
Hilfsfunktion	0, 1		O: automatischer Betrieb entsprechend der gewählten Punkte-Tabelle. 1: Betrieb entsprechend der aufeinanderfolgenden Punkte-Tabellen ohne Stopp. Wenn eine andere Drehrichtung eingestellt ist, erfolgt eine Bestätigung der Null-Glättung und die Drehrichtung wird anschließend umgekehrt. Die Eingabe von "1" in der Punkte-Tabelle Nr. 7 führt zu einem Fehler.	
Manuf .1 Manuf .2	Nicht ändern.			

5.7.3 Punkte-Tabelle, Konfiguration der Zielposition

Konfiguration der Zielposition

- ① Parameter auf "PE02 Feed function selection" und "Feed Length multiplication (STM) (Multiplier)" einstellen. Parameter "PE02 (Feed function selection)" ändern.
 - "Feed length multiplication (STM) (Multiplier)" wird automatisch skaliert.

<u>Für Antriebe mit einem Hub unter 1.000 mm</u> Parameter "PE02 (Feed function selection)" auf 0000 und "Feed length multiplication (STM) (Multiplier)" auf x1 setzen.

<u>Für Antriebe mit einem Hub über 1.000 mm</u> Parameter "PE02 (Feed function selection)" auf 0001 und "Feed length multiplication (STM) (Multiplier)" auf x10 setzen.

"Feed function selection (STM) (Multiplier)" der Zielposition in Parameter Nr. PE02 (Feed function selection) einstellen.

Einstellung Parameter Nr. PE02	Feed length multiplication (STM) (Multiplier) (Vorschubeinheit [µm])	Eingabebereich Zielposition [mm]
0	1	-999,999 bis +999,999
0001	10	-9.999,99 bis +9.999,99
	100	-99.999,9 bis +99.999,9
□□□3	1.000	-999.999 bis +999.999

Änderung Parameter [PE02(Feed function selection)].

- 1) Die Parameter PE02 im Reiter "Positioning setting" eingeben.
- 2) Feld "Single Axis Write" drücken.
- 3) Spannungsversorgung aus- und wieder einschalten. Anschließend ist der Parameter übernommen.

Änderung des Eingabebereichs der Zielposition

- 1) Auf "Detailed Setting" im Reiter "Point-Table" klicken.
- 2) [Feed length multiplication (STM) (Multiplier)] bestätigen oder ändern.
- 3) Taste "OK" drücken.
- 4) Der Eingabebereich der Zielposition variiert in Abhängigkeit des Einstellwerts von **[Feed length multiplication (STM) (Multiplier)].**

Feed length multiplication (STM) (Multiplier)	Eingabebereich Zielposition
(Vorschubeinheit [µm])	[mm]
1	-999,999 bis +999,999
10	-9.999,99 bis +9.999,99
100	-99.999,9 bis +99.999,9
1.000	-999.999 bis +999.999

<u>Für Antriebe mit einem Hub unter 1.000 mm</u> Parameter "PE02 (Feed function selection)" auf 0000 und "Feed length multiplication (STM) (Multiplier)" auf x1 setzen.

<u>Für Antriebe mit einem Hub über 1.000 mm</u> Parameter "PE02 (Feed function selection)" auf 0001 und "Feed length multiplication (STM) (Multiplier)" auf x10 setzen.

② Zielposition konfigurieren (mm). Einen Wert innerhalb des Hubbereiches wählen.

* Wenn die Parameter des elektronischen Getriebes (PA05, PA06 und PA07) den Angaben in der LECSA-Bedienungsanleitung (Vereinfachte Ausgabe), Kapitel 5.3.4, entsprechen:

Die kleinste Einheit der Antriebsbewegung beträgt 1 µm (0,001 mm).

5.7.4 Punkte-Tabelle, Konfiguration der Drehgeschwindigkeit

Konfiguration Drehgeschwindigkeit

① Konfiguration der Drehgeschwindigkeit:

*U/min: Vorgabe Motordrehzahl (Motorumdrehungen/min)

Die Lineargeschwindigkeit (mm/s) muss in Drehzahl umgerechnet werden (U/min).

Die Umrechnungsformel ist nachstehend aufgeführt.

Beispiel mit einem Antrieb mit 20 mm Steigung und einer Sollverfahrgeschwindigkeit von 500 mm/s.

Umdrehungen pro Sekunde

Verfahrweg pro Sekunde

• Verfahrweg pro Umdrehung

Drehzahl (U/min) ={Geschwindigkeit (mm/s) ÷ Steigung (mm)} × 60 (s)

= {500 (mm/s) ÷ 20 (mm)} × 60 (s) = 1.500 (U/min)

Die Drehzahl muss zwischen 0 und der zulässigen Drehzahlgrenze des jeweiligen Antriebs liegen. Wenn dieser Wert auf 0 gesetzt wird, dreht sich der Antrieb nicht.

Bei zu kleinen Drehzahlen (U/min) können Schwingungen (Resonanzen) auftreten.

5.7.5 Punkte-Tabelle, Konfiguration der Konstanten für Beschleunigungs- und Verzögerungszeit

Konfiguration der Konstanten für Beschleunigungs- und Verzögerungszeit

① Konfiguration der Konstanten für Beschleunigungs- und Verzögerungszeit (ms):

Die Beschleunigung/Verzögerung (mm/s²) muss in die Konstante für Beschleunigungs- und Verzögerungszeit (ms) umgerechnet werden. Die Umrechnungsformel ist nachstehend aufgeführt.

Beispiel einer Umrechnung für einen Antrieb mit einer Steigung von 8 mm bei einer Beschleunigung von 3.000 mm/s².

Nennmotordrehzahl (U/min)

Konstante für Beschleunigungs-/Verzögerungszeit (ms) = {Nennmotordrehzahl (U/min) ÷ 60 (s) } x Gewindesteigung (mm) x 1.000 Beschleunigung/Verzögerung (mm/s²)

*Nach dem die Konstante für Beschleunigungs-/Verzögerungszeit in ms angegeben werden, ergibt sich diese aus (s) x 1.000.

Konstante für Beschleunigungs-/Verzögerungszeit (ms) = $\frac{3.000 \text{ (U/min)} \div 60 \text{ (s)}}{3.000 \text{ (mm/s}^2)} \times 8 \text{ (mm)} \times 1.000}{3.000 \text{ (mm/s}^2)}$

= 133 (ms)

Die Konstante für Beschleunigungs-/Verzögerungszeit definiert die Zeit in (ms), innerhalb derer die Motordrehzahl von 3.000 U/min erreicht wird.

Die Konstante für Beschleunigungs-/Verzögerungszeit muss zwischen 0 und der zulässigen Beschleunigung/Verzögerung des jeweiligen Antriebs liegen.

5.7.6 Sonstige Einstellungen

Die Verweilzeit und die Hilfsfunktion sind auf "0" voreingestellt.

Die Werte für Manuf .1 (0) oder Manuf .2 (0,00) dürfen nicht geändert werden.

5.7.7 Schritt-Vorschub

Im Test-Modus kann ein Einzelschritt einer Punkte-Tabelle ausgeführt werden.

- ① Durch Auswahl von "Single-step Feed" aus dem Menü "Test" öffnet sich das Fenster "Single-step feed". Bei Verwendung dieser Funktion wird der Betrieb über externe Signale deaktiviert. Wenn eine SPS oder ein anderes übergeordnetes Gerät verwendet wird, dieses vor Verwendung ausschalten und wieder einschalten.
- ② Punkte-Tabelle auswählen.
- 3 "Start" drücken.

Der Antrieb übernimmt die Position, an der die Spannungsversorgung eingeschaltet wurde, als Ausgangsposition (0) und bewegt sich zur definierten Punkte-Tabelle-Position.

* Tritt eine unerwartete Bewegung auf, Parameter PA05, PA06 und PA07 (elektronisches Getriebeverhältnis) überprüfen.

Anm.

Im Test-Modus wird die Position im Moment der Spannungszufuhr als Ausgangsposition festgelegt, daher ist ein Betrieb des Antriebs über das Hubende hinaus möglich. Bitte achten Sie auf die Position des Antriebs, wenn die Spannungsversorgung eingeschaltet wird.

^{*} Im Test-Modus ist eine Rückstellung in Ausgangsposition nicht möglich.

5.8 Parameter speichern/laden

5.8.1 Parameter speichern

- ① Aus dem Fenster "Parameter Setting" in der Konfigurationssoftware "Save As" (Speichern unter) wählen.
- ② Geben Sie einen Speicherort an.
- 3 Geben Sie einen Dateinamen an.
- 4 Klicken Sie auf "Save".

Die Dateien wurden gespeichert.

.prm2 Konfigurationsdateien für die Parameter PA, PB, PC, PD und PE

* Anm. Vor einer Speicherung stets die aktuellen Parameter von der Endstufe in die Software laden. (Siehe LECSA-Bedienungsanleitung (Vereinfachte Ausgabe), Kapitel 5.3.2, hinsichtlich Laden.)

5.8.2 Gespeicherte Parameter laden

- ① Aus dem Fenster "Parameter Setting" in der Konfigurationssoftware "Open" (Öffnen) wählen.
- ② Geben Sie den Dateiort an.
- ③ Geben Sie die zu importierende Konfigurationsdatei an [.prm2].
- Auf "Öffnen" klicken.Die Parameter werden geladen.

5.9 Projekt speichern/laden

5.9.1 Projekt speichern

- ① Aus dem Menü "Project" in der Konfigurationssoftware "Save As" (Speichern unter) wählen.
- ② Geben Sie einen Speicherort an.
- 3 Geben Sie einen Dateinamen an.
- 4 Klicken Sie auf "Save".

Das Projekt wird im angegebenen Ordner gespeichert.

Bei einer Änderung des Laufwerks / Pfads erfolgt die Speicherung entsprechend unter "Laufwerk¥Pfad¥Projektname".

* Anm. Vor einer Speicherung stets die aktuellen Parameter von der Endstufe in die Software laden. (Siehe LECSA-Bedienungsanleitung (Vereinfachte Ausgabe), Kapitel 5.3.2, hinsichtlich Laden.)

5.9.2 Gespeichertes Projekt laden

- ① Aus dem Menü "Project" in der Konfigurationssoftware "Save Open" (Öffnen) wählen.
- ② Geben Sie den gewünschten Pfad Datei "Laufwerk¥Pfad¥Projektname" an, unter dem die Parameter abgelegt sind.
- ③ Wählen Sie die gewünschte Projektdatei aus [.mrc2].
- 4 Auf "Öffnen" klicken.Das Projekt wird geladen.

5.10 Punkte-Tabelle speichern/laden

5.10.1 Punkte-Tabelle speichern

- ① Aus dem Fenster "Point Table" in der Konfigurationssoftware "Save As" (Speichern unter) wählen.
- ② Geben Sie einen Speicherort an.
- 3 Geben Sie einen Dateinamen an.
- 4 Klicken Sie auf "Save".

5.10.2 Gespeicherte Punkte-Tabelle laden

- ① Aus dem Fenster "Point Table" in der Konfigurationssoftware "Open" (Öffnen) wählen.
- ② Geben Sie den Dateiort an.
- ③ Wählen Sie die gewünschte Punkte-Tabelle-Datei aus [.ptb2].
- 4 Auf "Öffnen" klicken.Die Punkte-Tabelle wird geladen

6. Vorgehensweise zur Rückstellung in Ausgangsposition

6.1 Stellungsregelungsmodus

Wenn die Rückstellung in Ausgangsposition im Positionssteuerungsmodus (Impulseingang) verwendet wird, die Funktion zur Rückstellung in Ausgangsposition im Positioniermodul der oberen SPS verwenden. Siehe Bedienungsanleitung des Produkts hinsichtlich Modullayouts, Parameterkonfiguration, Vorgehensweise zur Rückstellung in Ausgangsposition usw.

6.2 Positionierbetrieb (Punkte-Tabelle)

Im Positionierbetrieb (Punkte-Tabelle) ist eine Funktion zur Rückstellung in Ausgangsposition verfügbar. Es existieren 6 Formen der Rückstellung in Ausgangsposition. Siehe LECSA-Bedienungsanleitung, Kapitel 13.6 für weitere Informationen.

Ausführung	Vorgehensweise zur Rückstellung in Ausgangsposition	Eigenschaften
Dog	Nach Beginn der Verzögerung bei Erkennung der vorderen Flanke eines Näherungs-Dog-Switch-Signals wird das erste Signal der Z-Phase nach der hinteren Flanke des Dog-Signals, oder wenn eine Bewegung über die Verschiebungsstrecke der Ausgangsposition erfolgt, als Ausgangsposition definiert. (Anm.)	 Allgemeine Vorgehensweise zur Rückstellung in Ausgangsposition mithilfe eines Näherungs-Dog. Gute Wiederholgenauigkeit der Rückstellung in Ausgangsposition. Verringert die Belastung des Produkts. Wird verwendet, wenn die Breite des Näherungs-Dog größer als die Verzögerungsstrecke des Servomotors eingestellt werden kann.
Zähler	Nach Beginn der Verzögerung bei Erkennung der vorderen Flanke eines Näherungs-Dog-Switch-Signals wird das erste Signal der Z-Phase nach Verfahren der voreingestellten Verschiebungsstrecke nach der hinteren Flanke des Dog-Signals, oder wenn eine Bewegung über die Verschiebungsstrecke der Ausgangsposition erfolgt, als Ausgangsposition definiert.	 Vorgehensweise zur Rückstellung in Ausgangsposition mithilfe eines Näherungs-Zählers. Wird verwendet, wenn eine Minimierung der Länge des Näherungs-Dog erforderlich ist.
Datensatz	Es wird eine beliebige Position als Ausgangsposition definiert.	Es ist kein Näherungs-Dog erforderlich.
Anschlag	Die Position, an der der Antrieb stoppt, wenn dessen Schlitten gegen einen mechanischen Anschlag fährt, wird als Ausgangsposition definiert.	 Es findet eine Kollision zwischen dem Antrieb und der Maschine statt. Daher ist die Festigkeit der Maschine und des Anschlags zu erhöhen.
Keine Berücksichtigung der Ausgangsposition (Position Servo-on als Ausgangsposition)	Die Position, an der der Servo eingeschaltet wird, definiert die Ausgangsposition.	
Dog-Referenz hinten.	Die Position, an der die Achse, die mit der Verzögerung bei Erkennung der vorderen Flanke eines Näherungs-Dog-Switch-Signals begonnen hat, die Strecke nach dem Näherungs-Dog und die Verschiebungsstrecke der Ausgangsposition nach der hinteren Flanke des Dog-Switch-Signals verfahren ist, wird als Ausgangsposition definiert.	Das Signal der Z-Phase ist nicht erforderlich.
Zählerreferenz vorne	Die Position, an der die Achse, die mit der Verzögerung bei Erkennung der vorderen Flanke eines Näherungs-Dog-Switch-Signals begonnen hat, die Strecke nach dem Näherungs-Dog und die Verschiebungsstrecke der Ausgangsposition verfahren ist, wird als Ausgangsposition definiert.	Das Signal der Z-Phase ist nicht erforderlich.
Dog-Box	Die Position, an der das erste Signal der Z-Phase registriert wird, nachdem die vordere Flanke des Näherungs-Dog-Signals erkannt wurde, wird als Ausgangsposition definiert.	

Anm. Das Signal der Z-Phase wird von der Endstufe einmal je Servomotorumdrehung erkannt. Dieses Signal kann nicht als Ausgangssignal verwendet werden.

Parameter PE03 (Ausführung Rückstellung in Ausgangsposition) für die Rückstellung in Ausgangsposition konfigurieren. Der in der LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 5.3.4, empfohlene Parameter ist der Anschlag (PE03: 0003). Die Rückstellung in Ausgangsposition ist entsprechend der Kundenanwendung zu konfigurieren.

Parameter Nr. PE03

Parameter Nr. PE03

Ausführung Rückstellung in Ausgangsposition......(a)
0: Dog
1: Zähler
2: Datensatz
3: Anschlag
4: Keine Berücksichtigung der Ausgangsposition (Position Servo-on als Ausgangsposition)
5: Dog-Referenz hinten.
6: Zählerreferenz vorne

7: Dog-Box

6.2.1 Anschlag als Rückstellung in Ausgangsposition

Bei einem Anschlag als Rückstellung in Ausgangsposition wird mithilfe des JOG-Betriebs ein Maschinenteil gegen den Anschlag gedrückt. Die Position am Anschlag wird als Ausgangsposition definiert.

(1) Geräte und Parameter

Eingangsgeräte und Parameter wie nachfolgend dargestellt konfigurieren.

Position Gerät/Parameter		Beschreibung		
	Auswahl automatisch/manuell (MD0)	MD0 auf ON setzen.		
manuelle Rückstellung in Ausgangsposition	Auswahl Punkte-Tabelle Nr./Programm Nr. 1 bis 3 (DI0 bis DI2)	Punkte-Tabelle-Methode: Punkte-Tabelle: Auswahl der Vorgehensweise zur Rückstellung in Ausgangsposition durch setzen von DI0, DI1 und DI2 auf OFF. Programmiermethode Programm: Programm auswählen, dass den Befehl "ZRT" zur Rückstellung in Ausgangsposition enthält.		
Rückstellung in Ausgangsposition Anschlagausführung	Parameter Nr. PE03	□ □ □ 3: Anschlagausführung als Rückstellung in Ausgangsposition ausgewählt.		
Richtung Rückstellung in Ausgangsposition	Parameter Nr. PE03	Auswahl der Richtung Rückstellung in Ausgangsposition.		
Geschwindigkeit Rückstellung in Ausgangsposition	Parameter Nr. PE04	Einstellung der Geschwindigkeit bis zum Kontakt mit dem Anschlag.		
Anschlagzeit	Parameter Nr. PE10	Zeit ab dem Zeitpunkt des Kontakts mit dem Anschlag bis die Positionsdaten der Rückstellung in Ausgangsposition ermittelt sind.		
Anschlagausführung Drehmomentgrenzwert für Rückstellung in Ausgangsposition	Parameter Nr. PE11	Anschlagausführung Rückstellung in Ausgangsposition Drehmomentgrenzwert.		
Beschleunigungszeit Rückstellung in Ausgangsposition	Parameter Nr. PE07	Einstellung der Beschleunigungszeit während einer Rückstellung in Ausgangsposition.		
Positionsdaten Rückstellung in Ausgangsposition	Parameter Nr. PE08	Einstellung der Ausgangsposition nach Abschluss der Rückstellung in Ausgangsposition.		

Anm.

^{*} Um [PE**] einzustellen, "parameter write inhibit [PA19]" auf "00E" setzen.

(2) Zeit-Diagramm

- Anm. 1. Die Erkennung des externen Signals wird um die eingestellte Zeit des Eingangsfilters, Parameter Nr. PD19, verzögert. Es ist eine Sequenz vorzusehen, welche DI0, DI1 und DI2 vorzeitig ändert, indem die Verzögerungen in der Signalausgabesequenz des PCs oder der SPS sowie hardwarebedingte Signalschwankungen berücksichtigt werden.
- Anm. 2. TLC wechselt auf ON, wenn das Drehmoment den Wert erreicht, der als Drehmomentgrenze vorwärts (Parameter Nr. PA11), Drehmomentgrenze rückwärts (Parameter Nr. PA12) oder als interne Drehmomentgrenze (Parameter Nr. PC14) eingegeben wurde.
- Anm. 3. Die an diesem Punkt aktivierte Drehmomentgrenze ist folgende:

(Anm.) Eingangsgerät TL1	Status Grenzwert			validierte Drehmomentgrenzwerte
0				Parameter Nr. PE11
1	Parameter Nr. PC14	>	Parameter Nr. PE11	Parameter Nr. PE11
	Parameter Nr. PC14	<	Parameter Nr. PE11	Parameter Nr. PC14

Anm. 0: Off 1: On

Anm. 4. Punkte-Tabelle-Methode: Auswahl der Vorgehensweise zur Rückstellung in Ausgangsposition durch Setzen von DI0, DI1 und DI2 auf OFF.

Programmiermethode: Programm auswählen, das den Befehl "ZRT" zur Rückstellung in Ausgangsposition enthält.

Die Positionsadresse zum Zeitpunkt der Beendigung der Rückstellung in Ausgangsposition wird als Wert für den Parameter Nr. PE08 (Positionsdaten Rückstellung in Ausgangsposition) herangezogen.

7. Antriebsmethoden für jeden Modus

7.1 Positionssteuerungsmodus (Impulseingang)

Die Regelung der Motordrehzahl und Drehrichtung erfolgt mithilfe der Impulsfolge, welche den Positionierbetrieb umsetzt.

7.1.1 Anweisungen Positionssteuerungsmodus

Der Impulsbefehl, der als Eingang zur Endstufe von der Positioniereinheit gesendet wird, und die Endstufe betreiben den Antrieb entsprechend des Impulsbefehls. Nachfolgend sind Beispiele für Impulsbefehle und Endstufenbetrieb dargestellt.

7.2 Geschwindigkeitsregelungsmodus

Dieser Modus ermöglicht die präzise Regelung der Drehgeschwindigkeit und Drehrichtung des Servomotors. * Um [PC**] einzustellen, "parameter write restriction" [PA19] auf "00E" setzen.

7.2.1 Betriebsanweisungen Geschwindigkeitsregelungsmodus

Der Servomotor dreht sich, wenn die Signale ST1 oder ST2 auf ON stehen. Nachstehend ist ein Beispiel für den Geschwindigkeitsregelungsmodus dargestellt.

Einstellungen interne Geschwindigkeitsbefehle

Geschwindigkeitsbefehl und Geschwindigkeit

Der Servomotor wird mit der in den Parametern vorgegebenen Geschwindigkeit betrieben.

Es können bis zu 8 Geschwindigkeiten über den internen Geschwindigkeitsbefehl vorgegeben werden.

Nachstehende Tabelle gibt die Drehrichtung entsprechend der Kombination Start Vorwärtsdrehung (ST1) und Start Rückwärtsdrehung (ST2) an.

(Anm. 1) E	ingangsgerät	(Apm. 2) Drobrichtung		
ST2	ST1	(Anm. 2) Drehrichtung		
0	0	Stopp (Servobremse)		
0	1	Vorwärtsdrehung (CCW)		
1	0	Rückwärtsdrehung (CW)		
1	1	Stopp (Servobremse)		

Anm. 1. 0: Off

Folgende Verdrahtung vornehmen, wenn ein Vorwärts- oder Rückwärtsbetrieb von einem internen Geschwindigkeitsbefehl vorgegeben wird, der auf die achte Geschwindigkeit eingestellt ist.

Bitte beachten, dass die Eingänge als NPN-Stromsenken konfiguriert sind.

Siehe LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 5.5 hinsichtlich Signalzuweisungen.

LECSA Parametereinstellung Geschwindigkeitsbefehl

(Aı	(Anm.) Eingangsgerät			
SP3	SP2	SP1	Wert Geschwindigkeitsbefehl	
0	0	0	interner Geschwindigkeitsbefehl 0 (Parameter Nr. PC05)	Start-
0	0	1	interner Geschwindigkeitsbefehl 1 (Parameter Nr. PC06)	phase
0	1	0	interner Geschwindigkeitsbefehl 2 (Parameter Nr. PC07)	
0	1	1	interner Geschwindigkeitsbefehl 3 (Parameter Nr. PC08)	
1	0	0	interner Geschwindigkeitsbefehl 4 (Parameter Nr. PC31)	
1	0	1	interner Geschwindigkeitsbefehl 5 (Parameter Nr. PC32)	
1	1	0	interner Geschwindigkeitsbefehl 6 (Parameter Nr. PC33)	
1	1	1	interner Geschwindigkeitsbefehl 7 (Parameter Nr. PC34)	

Anm. 0:OFF

1:ON

Für LECSA sind 8 Geschwindigkeitskonfigurationen verfügbar.

7.3 Drehmoment-Steuermodus

Es kann das Ausgangsdrehmoment des Servomotors gesteuert werden. Eine Funktion zur Geschwindigkeitsregelung ist ebenfalls erhältlich.

* Um [PC**] einzustellen, "parameter write restriction" [PA19] auf "00E" setzen.

7.3.1 Betriebsanweisungen Drehmoment-Steuermodus

Der Servomotor dreht sich, wenn die Signale RS1 oder RS2 auf ON stehen. Nachstehend ist ein Beispiel für den Drehmoment-Steuermodus dargestellt. Einstellungen interner Drehmomentbefehl

Das Drehmoment wird durch den in Parameter Nr. PC12 eingegebenen Befehl gesteuert.

Bei einem kleinen Drehmomentwert kann das Drehmoment schwanken, wenn der Antrieb den Geschwindigkeitsgrenzwert erreicht. In diesem Fall ist der Geschwindigkeitsgrenzwert zu erhöhen.

Nachstehende Tabelle gibt die Drehmomentrichtung an, die von der Auswahl Vorwärtsdrehung (RS1) und Auswahl Rückwärtsdrehung (RS2) bestimmt wird, wenn der interne Drehmomentbefehl (Parameter Nr. PC12) verwendet wird.

(Anm.) Eingangsgerät		Drehrichtung				
D00 D04		interner Drehmomentbefehl, Parameter Nr. PC12				
RS2	RS1	0,1 bis 100,0 %	0,0 %			
0	0	Es wird kein Drehmoment erzeugt.				
0	1	CCW (Rückwärtsdrehung im Antriebsmodus/Vorwärtsdrehung im Regenerationsmodus)	Es wird kein			
1	0	CW (Vorwärtsdrehung im Antriebsmodus/Rückwärtsdrehung im Regenerationsmodus)	Drehmoment erzeugt.			
1	1	Es wird kein Drehmoment erzeugt.				

Anm. 0: Off 1: On

Grundsätzlich folgende Anschlüsse vornehmen.

Bitte beachten, dass die Eingänge als NPN-Stromsenken konfiguriert sind.

Siehe LECSA-Bedienungsanleitung (vereinfachte Ausgabe), Kapitel 5.5 hinsichtlich Signalzuweisungen.

LECSA Parametereinstellung Geschwindigkeitsbegrenzung

ELOGAT diameter emisterially descriwing kellsbegrenzung						
(An	(Anm.) Eingangsgerät		Mort Coophy indiction of the			
SP3	SP2	SP1	Wert Geschwindigkeitsbefehl			
0	0	0	interner Geschwindigkeitsbefehl 0 (Parameter Nr. PC05)	Start-		
0	0	1	interner Geschwindigkeitsbefehl 1 (Parameter Nr. PC06)	phase		
0	1	0	interner Geschwindigkeitsbefehl 2 (Parameter Nr. PC07)			
0	1	1	interner Geschwindigkeitsbefehl 3 (Parameter Nr. PC08)			
1	0	0	interner Geschwindigkeitsbefehl 4 (Parameter Nr. PC31)			
1	0	1	interner Geschwindigkeitsbefehl 5 (Parameter Nr. PC32)			
1	1	0	interner Geschwindigkeitsbefehl 6 (Parameter Nr. PC33)			
1	1	1	interner Geschwindigkeitsbefehl 7 (Parameter Nr. PC34)			

Anm. 0:OFF

1:ON

Für LECSA sind 8 Geschwindigkeitskonfigurationen verfügbar.

7.4 Positionierbetrieb (Punkte-Tabelle)

Der Positionierbetrieb kann durch Eingabe von Zielposition, Drehgeschwindigkeit, Beschleunigungszeit, Verzögerungszeit in die Punkte-Tabelle durchgeführt werden. (Es können bis zu 7 Punkte in der Punkte-Tabelle definiert werden.)

Siehe LECSA-Bedienungsanleitung, Kapitel 13.3 für weitere Informationen hinsichtlich des Positionierbetriebs (Punkte-Tabelle)

7.4.1 Betriebsanweisungen für Punkte-Tabellen

Punkte-Tabellen-Nr. auswählen, die durch die Werte von DI0, DI1 und DI2 bestimmt ist. Betrieb durch Wahl von ST1 oder ST2 starten.

Gerät	Symbol	Anschluss- Pin-Nr.		Funktionen/Anwendungen			I/O- Bereich	Positi beti		
		FILI-INI.						bereich	CP	CL
Punkte-	DI0	CN1-5	Р	unkte	-Tabe	lle-Me	ethode:	DI-1	0	0
Tabelle Nr. /				Die P	unkte	-Tabe	lle-Nr. und Vorgehensweise zur			
Programman-				Rücks	stellur	ng in A	usgangsposition werden durch			
wahl Nr. 1				DI0 bi	s DI2	besti	mmt.			
			Р	rograi	mmiei	rmeth	ode			
				Die P	rograi	mm-N	r. wird durch DI0 bis DI2			
				bestin	nmt.					
				(Ar	ım.) G	erät	Beschreibung Auswahl			
Punkte-	DI1	CN1-23		DI2	DI1	DI0	Punkte-Tabelle-Methode	DI-1	0	0
Tabelle Nr. / Programman-				0	0	0	Rückstellung in Ausgangsposition			
wahl Nr. 2				0	0	1	Punkte-Tabelle Nr. 1			
Walli Wi. Z				0	1	0	Punkte-Tabelle Nr. 2			
				0	1	1	Punkte-Tabelle Nr. 3			
				1	0	0	Punkte-Tabelle Nr. 4			
Punkte-	DI2			1	0	1	Punkte-Tabelle Nr. 5	DI-1	Δ	Δ
Tabelle Nr. /				1	1	0	Punkte-Tabelle Nr. 6			
Programman-				1	1	1	Punkte-Tabelle Nr. 7			
wahl Nr. 3			,	Anm.	0: Off					
				1: On						
Programm-	PI1						tzusetzen, der durch den n Programm gestoppt wurde, PI1	DI-1		Δ
Eingang 1			aı	uf ON	setze	en.				

Wenn der Parameter "PE01 : Command mode selection" auf "0000: Absolute value command system" gesetzt ist .

Punkte- Tabelle Nr.	Zielposition [×10 ^{STM} µm]	Drehge- schwindigkeit [U/min]	Konstante für Beschleu- nigungszeit	Konstante für Verzöge- rungszeit	Verweilzeit [ms]	Hilfsfunktion
1	5,00	3.000	[ms] 100	[ms] 150	100	1
2	-6,00	2.000	100	100	0	3
3	3,00	3.000	50	50	0	0 (Anm.)

Anm. In der letzten Punkte-Tabelle stets "0" oder "2" für die Hilfsfunktion eingeben.

^{0:} Verwendung der Punkte-Tabelle im Absolutwert-Befehlssystem

^{2:} Verwendung der Punkte-Tabelle im Inkrementalwert-Befehlssystem

7.4.2 Einstellmethode

(1) Einstellung mit dem Druckknopf an der Vorderseite der Endstufe.

Beispiel: Änderung der Drehgeschwindigkeit des Servomotors der Punkte-Tabelle Nr. 3 von 2.500 (U/min) auf 1.000 (U/min).

Anzeige

Endstufe

SET

MODE

 a. Wenn die "MODE"-Taste an der Endstufe gedrückt wird, wechselt die Anzeige wie unten dargestellt. "P-1" wählen.

b. Wenn die "MODE"-Taste an der Endstufe gedrückt wird, wechselt die Anzeige wie unten dargestellt. "P-3" wählen und anschließend die Taste "SET" drücken.

c. Mithilfe der Taste "UP" und "DOWN" an der Endstufe "Spd" auswählen und anschließend die Taste "SET" drücken.

wird angezeigt. Es werden die unteren 3 Stellen des Einstellwerts angezeigt. Die Vorgehensweise ist unten beschrieben.

Durch Drücken der "MODE"-Taste werden die oberen 3 Ziffern angezeigt. Einstellwert wie unten dargestellt ändern.

Siehe LECSA-Bedienungsanleitung, Kapitel 13, für Parameterdetails.

7.5 Positionierbetrieb (Programmiermethode)

Für den Positionierbetrieb ist ein Programm unter Verwendung der Zielposition, Drehgeschwindigkeit, Konstante für Beschleunigung und Konstante für Verzögerung zu erstellen. Es können bis zu 8 Programme mit jeweils bis zu 120 Schritten erstellt werden. Software MR Configurator2TM: LEC-MRC2E installieren, um die Programmdaten konfigurieren zu können.

- *1. Konfigurationssoftware Version 1.19 V oder höher erforderlich.
- *2. Die Konfigurationssoftware ist vom Anwender bereitzustellen.
- *3. Zur Konfiguration mit der Software ist ein USB-Kabel (LEC-MR-J3USB) erforderlich.

Siehe LECSA-Bedienungsanleitung, Kapitel 13.4 für weitere Informationen hinsichtlich des Positionierbetriebs (Programmiermethode).

Siehe LECSA-Bedienungsanleitung, Kapitel 13.9 für weitere Informationen hinsichtlich Programmiermethoden.

7.5.1 Einstellmethode

- Konfigurationssoftware starten und aus dem Menüpunkt "Positioning Data" "Program" auswählen.
- 2 Im Programmfenster "Edit" wählen, damit sich das Fenster zum Editieren des Programms erscheint.
- ③ Programme erstellen.
- ④ "OK" klicken.
- Mit dem Befehl "Write" im Programmfenster wird das Programm an die Endstufe übertragen.

7.5.2 Programmierbefehle

Nachstehend sind Beispiele zu Programmierbefehlen angegeben.

Siehe LECSA-Bedienungsanleitung, Kapitel 13.4.2 für weitere Informationen zu Programmierbefehlen.

Es sind bis zu 120 Programmschritte möglich. Es können bis zu 8 Programme mit jeweils 120 Programmschritten erstellt werden.

Das Einstellprogramm kann durch die Punkte-Tabelle-Nr. / Programmanwahl Nr. 1 (DI0) bis Punkte-Tabelle-Nr. / Programmanwahl Nr. 3 (DI2) gewählt werden.

(1) Beispiel: Befehlsliste

Befehl	Bezeichnung	Einstellung	Einstellbereich	Einheit	indirekte Adressierung	Beschreibung
SPN	Geschwin- digkeit (Motor- drehzahl)	SPN (Einstell- wert)	0 bis momentan zulässige Geschwindig- keit	U/min	0	Wird zur Einstellung der Sollgeschwindigkeit des Servomotors für den Positionierbetrieb verwendet. Der Einstellwert sollte max. die momentan zulässige Geschwindigkeit des Servomotors betragen.
STA	Konstante für Beschleuni- gungszeit	STA (Einstell- wert)	0 bis 20.000	ms	0	Wird zur Einstellung der Konstanten für Beschleunigungszeit während einer Rückstellung in Ausgangsposition verwendet. Dieser Einstellwert ist die Zeit, innerhalb derer der Servomotor nach einem Stopp die Nenngeschwindigkeit erreicht. Er kann während der Befehlsausgabe nicht geändert werden.
STB	Konstante für Verzögerungs- zeit	STB (Einstell- wert)	0 bis 20.000	ms	0	Wird verwendet, um die Konstante für Verzögerungszeit einzustellen. Dieser Einstellwert ist die Zeit, innerhalb derer der bei Nenngeschwindigkeit laufende Servomotor anhält. Er kann während der Befehlsausgabe nicht geändert werden.

7.5.3 Programmierung von Betriebsanweisungen

Punkte-Tabellen-Nr. auswählen, die durch die Werte von DI0, DI1 und DI2 bestimmt ist und Betrieb durch Wahl von ST1 starten.

Gerät	Symbol	Anschluss-		Funktionen/Anwendungen			1/0-	Positi beti		
		Pin-Nr.					-	Bereich	СР	CL
Punkte- Tabelle Nr./ Programm- anwahl Nr. 1	DI0	CN1-5	Punkte-Tabelle-Methode: Die Punkte-Tabelle-Nr. und Vorgehensweise zur Rückstellung in Ausgangsposition werden durch DI0 bis DI2 bestimmt. Programmiermethode Die Programm-Nr. wird durch DI0 bis DI2 bestimmt.				DI-1	0	0	
			Г	(Anı	m.) G	Serät	Beschreibung Auswahl			
Punkte- Tabelle Nr./ Programm- anwahl Nr. 2	DI1	CN1-23		DI2 0 0 0 0 0 1	DI1 0 0 1 1	DI0 0 1 0 1 0	Programmiermethode Programm Nr. 1 Programm Nr. 2 Programm Nr. 3 Programm Nr. 4 Programm Nr. 5	DI-1	0	0
Punkte- Tabelle Nr./ Programm- anwahl Nr. 3	DI2		A	1 1 1 .nm. (0 1 1 0: Off 1: Or		Programm Nr. 6 Programm Nr. 7 Programm Nr. 8	DI-1	Δ	
Programm- Eingang 1	PI1		SIN	NK-Be	efehl	(1) in	tzusetzen, der durch den n Programm gestoppt I setzen.	DI-1		Δ

Programm		Beschreibung	
SPN (1.000)	Geschwindigkeit (Motordrehzahl)	1.000 U/min	a) \
STA (200)	Konstante für Beschleunigungszeit	200 ms	b)
STB (300)	Konstante für Verzögerungszeit	300 ms	c)
MOV (1.000)	Befehl Absolut-Bewegung	1.000 × 10 ^{S™} µm	d) ←
TIM (100)	Befehl Verweilzeit	100ms	e)
MOV (2.000)	Befehl Absolut-Bewegung	2.000 x 10 ^{S™} µm	f) •
STOP	Programmende		

8. Fehlersuche

8.1 Alarme und Warnungen

PUNKT

 Bei Auftreten eines Alarms Servo-On (SON) die Hauptschaltkreis-Spannungsversorgung ausschalten.

Wenn der Alarm während des Betriebs auftritt, wird der entsprechende Alarm oder die Warnung angezeigt. Bei einer Warnung oder Alarm siehe LECSA-Bedienungsanleitung, Kapitel 8.2, oder LECSA-Bedienungsanleitung, Kapitel 8.3, hinsichtlich der zu ergreifenden Maßnahmen. Bei Auftreten eines Alarms wird ALM auf OFF gesetzt. Nach Behebung der Störungsursache kann der Alarm anhand der in der Rücksetzspalte angegebenen Methoden Curückgesetzt werden. Die Warnung erlischt nach Behebung der Ursache automatisch.

				А	larm zurücksetze	n
$ \rangle $	Nr.	LED-	Bezeichnung	Spannungs-	Taste "SET" am	Alarm-
$ \cdot $	INI.	Anzeige	Bezeichnung	versorgung	Alarm-Fenster	Reset
				OFF→ON	drücken	(RES)
	A.10	R 10	Unterspannung	0	0	0
	A.12	R. 12	Speicherfehler 1 (RAM)	0		
	A.13	R. (3	Uhrfehler	0		
	A.15	R 15	Speicherfehler 2 (EEPROM)	0		
	A.16	R 15	Encoder Kommunikationsfehler Initialisierung 1	0		
	A.17	R.	Platinenfehler	0		
	A.19	민	Speicherfehler 3 (Flash-ROM)	0		
	A.1A	R: 'R	Fehler Motorkombination	0		
	A.1C	X II	Fehler Softwarekombination	0		
	A.1E	R. IE	Encoder Kommunikationsfehler Initialisierung 2	0		
	A.1F	R (F	Encoder Kommunikationsfehler Initialisierung 3	0		
	A.20	R20	Encoder Kommunikationsfehler 1	0		
æ	A.21	23 ::	Encoder Kommunikationsfehler 2	0		
Alarme	A.24	R24	Hauptschaltkreisfehler	0	0	0
A	A.30	R.30	Regenerationsfehler	(Anm. 1) 🔾	(Anm. 1) 🔾	(Anm. 1) 🔾
	A.31		Überdrehzahl	0	0	0
	A.32	R.32	Überstrom	0		
	A.33	EE.R	Überspannung	0	0	0
	A.35	R35	Fehler Frequenzbefehl	0	0	0
	A.37	7E.R	Parameterfehler	0		
	A.45	R45	Überhitzung Hauptschaltkreisgerät	(Anm. 1) O	(Anm. 1) O	(Anm. 1) O
	A.46	R4 5	Überhitzung Servomotor	(Anm. 1) O	(Anm. 1) O	(Anm. 1) O
	A.50	R50	Überlast 1	(Anm. 1) O	(Anm. 1) O	(Anm. 1) 🔾
	A.51	R5 (Überlast 2	(Anm. 1) O	(Anm. 1) O	(Anm. 1) O
	A.52	R52	Fehler übermäßig	0	0	0
	A.8E	R.B.E	USB-Kommunikationsfehler	0	0	0
	888	888	Watchdog	0		

	Nr.	3-stellige 7-Segment- LED- Anzeige	Bezeichnung	Servomotor stoppt/ stoppt nicht
	A.90	R.90	Warnung Rückstellung in Ausgangsposition unvollständig	stoppt
	A.91	R.9 :	Warnung Überhitzung Endstufe	stoppt nicht
	A.96	R.96	Fehler Einstellung Rückstellung in Ausgangsposition	stoppt
	A.97	79.T	Programmbetrieb deaktiviert	stoppt nicht
	A.98	R.98	Warnung Softwareendschalter	stoppt (Anm. 2)
ng	A.99	R.9.9	Warnung Hubende	stoppt (Anm. 2)
Warnung	A.E0	R.E.C	Warnung übermäßige Regeneration	stoppt nicht
×	A.E1	RE (Warnung Überlast 1	stoppt nicht
	A.E6	RE 6	Warnung Servo erzwungener Stopp	stoppt
	A.E9	RE9	Warnung Hauptschaltkreis aus	stoppt
	A.EC	R.E.C	Warnung Überlast 2	stoppt nicht
	A.ED	R.E.d	Warnung übermäßige Ausgangsleistung	stoppt nicht
	A.F0	R.F.C	Warnung harter Betrieb	stoppt nicht

Anm. 1. Der Alarm kann nach etwa 30 Minuten Abkühlzeit nach Behebung der Ursache deaktiviert werden.

Anm. 2. Es ist ein Betrieb in der Richtung möglich, die die Warnung aufhebt.

Revisionen

Nr. LEC-OM05601

Erstausgabe Dez. 2012

Nr. LEC-OM05602

2. Ausgabe Dez. 2013

Nr. LEC-OM05603

3. Ausgabe Jun. 2014

Nr. LEC-OM05604

4. Ausgabe Aug. 2014

Nr. LEC-OM05605

5. Ausgabe Okt. 2014

Nr. LEC-OM05606

6. Ausgabe Okt 2014

Nr. LEC-OM05607

7. Ausgabe Dez. 2014

Nr. LEC-OM05608

8. Ausgabe Apr. 2015

Nr. LEC-OM05609

9. Ausgabe Sep. 2015

SMC Corporation

4-14-1, Sotokanda, Chiyoda-ku, Tokio 101-0021 JAPAN Tel: + 81 3 5207 8249 Fax: +81 3 5298 5362

URL http://www.smcworld.com

Anm.: Die Angaben können ohne vorherige Ankündigung, und ohne dass daraus eine Verpflichtung für den Hersteller entsteht, geändert werden. © 2015 SMC Corporation Alle Rechte vorbehalten

Serie LECSA

Serie LECSB

Positionierung auf bis zu 7 Punkten nach Punkte-Tabelle Eingangsart: Impulseingang Steuerungs-Encoder: Inkre-

mental-Encoder 17-bit

(Auflösung: 131072 Imp./U) **Paralleleingang:** 6 Eingänge

Ausgang: 4 Ausgänge

Eingangsart: Impulseingang **Steuerungs-Encoder:** Ab-

solut-Encoder 18-bit

(Auflösung: 262144 Imp./U) **Paralleleingang:** 10 Eingänge

Ausgang: 6 Ausgänge

Serie LECSC

Einstellung der Positionierdaten/Geschwindigkeitsdaten und Betriebs-Start/Stopp Positionierung anhand von bis 255 Punkte-Tabellen (bei Belegung von 2 Stationen)

Bis zu 32 Endstufen können angeschlossen werden (bei Belegung von 2 Stationen) (mit CC-Link-Kommunikation)

Kompatibles Feldbusprotokoll: CC-Link (Ver. 1.10, max. Kommunikations-

geschwindigkeit: 10 Mbps)

Steuerungs-Encoder: Absolut-Encoder 18-bit (Auflösung: 262144 Imp./U)

Serie LECSS

Kompatibel mit dem Servosystem von Mitsubishi Electric Vereinfachte Verdrahtung und SSCNET III-Glasfaserkabel für einfaches Anschließen

Das SSCNET III-Glasfaserkabel bietet eine verbesserte Festigkeit gegenüber elektromagnetischen Störsignalen

Bis zu 16 Endstufen können an die SSCNET III-Kommunikation angeschlossen werden

Kompatibles Feldbusprotokoll: SSCNET III

(optische Hochgeschwindigkeits-Kommunikation, max. bidirektionale

Kommunikationsgeschwindigkeit: 100 Mbps)

Steuerungs-Encoder: Absolut-Encoder 18-bit (Auflösung: 262144 Imp./U)

Zentrale:

TBT Technisches Büro Traffa e.K.

Theodor-Heuss-Str. 8 D- 71336 Waiblingen

Tel.: +49 (0) 71 51 / 604 24-0 Fax.: +49 (0) 71 51 / 604 24-40

E-Mail: info@traffa.de Web: www.traffa.de NL Bayern:

TBT Technisches Büro Traffa e.K.

Schöneckerstr. 4 D- 91522 Ansbach

Tel.: +49 (0) 981 / 48 78 66-50 Fax.: +49 (0) 981 / 48 78 66-55

E-Mail: mail@traffa.de Web: www.traffa.de