Traffa

Motorless Spindelachse LEJS

Innovative Antriebslösungen

Der optimale Antrieb individuell für Ihre Anforderung

Ausführung mit hoher Steifigkeit und Kugelumlaufführung

Kugelumlaufspindel Serie LEJS

Motorlose Ausführung

Elektrischer Antrieb/Ausführung mit hoher Steifigkeit und Kugelumlaufführung

Kugelumlaufspindel/Serie LEJS

Modellauswahl

Serie LEJS ▶ Seite 55

Auswahlverfahren

Schritt 3 Prüfen Sie das zulässige Moment.

Auswahlbeispiel

Die unten dargestellte Typenauswahlmethode bezieht sich auf den Standardmotor von SMC. Für die Verwendung in Kombination mit einem Motor eines anderen Herstellers prüfen Sie bitte die verfügbaren Produktinformationen des zu verwendenden Motors.

Betriebsbedingungen

- Werkstückgewicht: 60 [kg]
- Geschwindigkeit: 300 [mm/s]
- Beschleunigung/Verzögerung: 3000 [mm/s²]
- Hub: 300 [mm]
- Einbaurichtung: horizontal
- Außenkraft: 10 [N]

Schritt 1 Überprüfen Sie das Verhältnis Geschwindigkeit - Nutzlast.

Wählen Sie auf der Grundlage des Werkstückgewichts und der Geschwindigkeit das geeignete Modell innerhalb der Antriebsspezifikationen aus dem "Geschwindigkeits-Nutzlast-Diagramm (Führung)" auf Seite 46 aus. Auswahlbeispiel: Die Ausführung LEJS63 B-300 wird basierend auf dem Diagramm vorläufig ausgewählt. * Siehe Katalog des Motorherstellers für nähere Angaben zum Bremswiderstand.

Schritt 2 Überprüfen Sie die Zykluszeit.

Siehe Methode 1 für eine grobe Schätzung und Methode 2 für einen präziseren Wert.

Methode 1: Überprüfen Sie das Zykluszeit-Diagramm. (Seite 63)

Das Diagramm basiert auf der Höchstgeschwindigkeit der einzelnen Größen.

Methode 2: Berechnung

Die **Zykluszeit** T wird aus folgender Gleichung ermittelt.

$$T = T1 + T2 + T3 + T4 [s]$$

• T1 und T3 werden aus folgender Gleichung ermittelt.

Die Beschleunigungs- und Verzögerungswerte haben je nach Werkstückgewicht und Einschaltdauer eine Obergrenze. Stellen Sie sicher, dass sie die Obergrenze nicht überschreiten, siehe "Nutzlast-Beschleunigungs-/Verzögerungs-Diagramm (Führung)" (Seiten 64 und 65).

Die Ausführung mit Kugelumlaufspindel hat je nach Hub eine Geschwindigkeits-Höchstgrenze. Anhand der technischen Daten prüfen, dass die Höchstgrenze nicht überschritten wird (Seite 73).

• T2 wird aus folgender Gleichung ermittelt.

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V} [s]$$

• T4 variiert je nach Motorart und -last. Der nachstehende Wert wird empfohlen.

$$T4 = 0.05 [s]$$

Berechnungsbeispiel:

T1 bis T4 können wie folgt ermittelt werden.

$$T1 = V/a1 = 300/3000 = 0,1 [s],$$

$$T3 = V/a2 = 300/3000 = 0,1 [s]$$

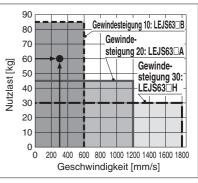
$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}$$
$$= \frac{300 - 0.5 \cdot 300 \cdot (0.1 + 0.1)}{300}$$

$$= 0.90 [s]$$

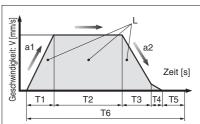
$$T4 = 0.05 [s]$$

Dementsprechend wird die Zykluszeit wie folgt berechnet.

$$T = T1 + T2 + T3 + T4$$
$$= 0.1 + 0.90 + 0.1 + 0.05$$



Schritt 3 Prüfen Sie das Führungsmoment. <Zulässige statische Momente> <Zulässiges dynamisches Moment>


Stellen Sie sicher, dass das auf den Antrieb wirkende Moment innerhalb des zulässigen Bereichs sowohl für die statischen als auch für die dynamischen Bedingungen liegt.

Auswahlbeispiel: Wählen Sie die Ausführung LEJS63□B-300 aus dem Diagramm rechts. Stellen Sie sicher, dass die Außenkraft innerhalb des zulässigen Werts (20 [N]) liegt. (Die externe Krafteinwirkung ist der Widerstand, der durch Kabelführungen, biegsame Hauptleitungen oder Druckluftleitungen verursacht wird)

<Geschwindigkeit-Nutzlast-Diagramm> (LEJS63)

L: Hub [mm]

V: Geschwindigkeit [mm/s]

a1: Beschleunigung [mm/s2]

a2: Verzögerung [mm/s²]

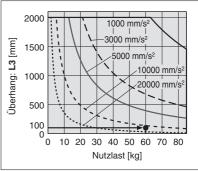
T1: Beschleunigungszeit [s] Zeit bis zum Erreichen der Einstellgeschwindigkeit

T2: Zeit bei konstanter Drehzahl [s] Zeit, in der der Antrieb bei konstanter Drehzahl in Betrieb ist

T3: Verzögerungszeit [s]

Zeit ab Beginn des Betriebs bei konstanter Drehzahl bis Stopp

T4: Einschwingzeit [s]


Zeit bis zum Erreichen der Endlage

T5: Ruhezeit [s] Zeit, in der der Antrieb sich nicht bewegt

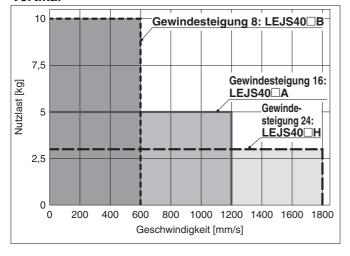
T6: Gesamtzeit [s]

Gesamtzeit von T1 bis T5

Einschaltdauer: Dauer von T bis T6 T ÷ T6 x 100

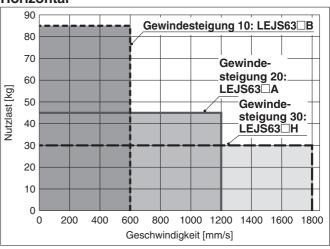
<Zulässiges dynamisches Moment> (LEJS63)

* Die nachstehenden Werte liegen innerhalb der Spezifikationsbereiche des Antriebsgehäuses bei montiertem Standardmotor und dürfen nicht überschritten werden.

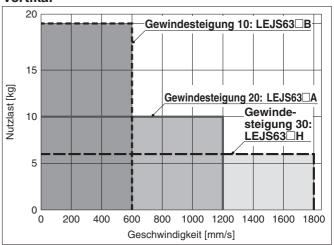

Antriebsgehauses bei montiertem Standardmotor und durfen nicht überschriften wer Die zulässige Geschwindigkeit ist je nach Hub begrenzt. Wählen Sie diese unter Berücksichtigung der "zulässigen Hub-Geschwindigkeit" aus.

Geschwindigkeits-Nutzlast-Diagramm (Führung)

LEJS40/Kugelumlaufspindel


Horizontal 60 Gewindesteigung 8: LEJS40□B 50 40 Gewinde-Nutzlast [kg] steigung 16: LEJS40□A 30 Gewindesteigung 24: -LEJS40⊟H 20 10 0 0 800 1000 1200 1400 1600 1800 Geschwindigkeit [mm/s]

Vertikal



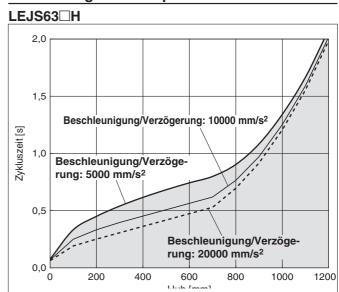
LEJS63/Kugelumlaufspindel

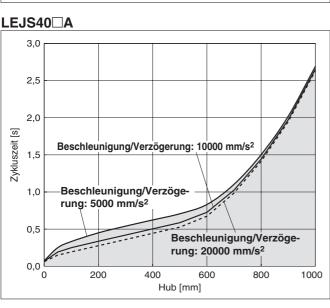
Horizontal

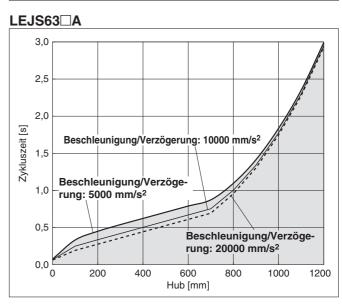
Vertikal

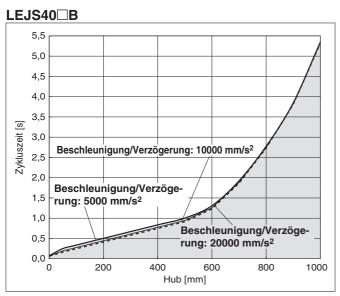
Zulässige Hub-Geschwindigkeit

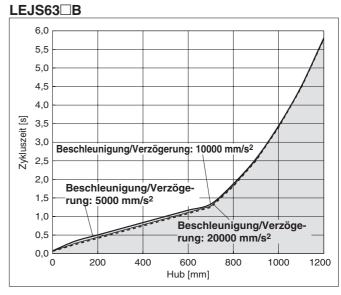
																	[mm/s]
Modell	Motor	Ste	eigung		Hub [mm]												
Modeli	IVIOLOI	Symbol	[mm]	bis 200	bis 300	bis 400	bis 500	bis 600	bis 700	bis 800	bis 900	bis 1000	bis 1100	bis 1200	bis 1300	bis 1400	bis 1500
		Н	24		18	00		1580	1170	910	720	580	480	410	_	_	_
LEJS40	entspricht	Α	16		12	00		1050	780	600	480	390	320	270		_	_
LLUS4U	100 W	В	8		60	00		520	390	300	240	190	160	130		_	_
		(Motor	-Drehzahl)		(4500	U/min)		(3938 U/min)	(2925 U/min)	(2250 U/min)	(1800 U/min)	(1463 U/min)	(1200 U/min)	(1013 U/min)		_	_
		Н	30	_			1800			1390	1110	900	750	630	540	470	410
LEJS63	entspricht	Α	20	_			1200	1200		930	740	600	500	420	360	310	270
LEJ303	200 W	В	10	_			600			460	370	300	250	210	180	150	130
		(Motor	-Drehzahl)	_		(3	600 U/m	in)		(2790 U/min)	(2220 U/min)	(1800 U/min)	(1500 U/min)	(1260 U/min)	(1080 U/min)	(930 U/min)	(810 U/min)




Zykluszeit-Diagramm (Führung)


LEJS40/Kugelumlaufspindel


LEJS40□H 2,0 1,5 Beschleunigung/Verzögerung: 10000 mm/s² Zykluszeit [s] 1,0 Beschleunigung/Verzögerung: 5000 mm/s² 0.5 Beschleunigung/Verzögerung: 20000 mm/s² 0.0 600 200 400 800 1000 Hub [mm]


LEJS63/Kugelumlaufspindel

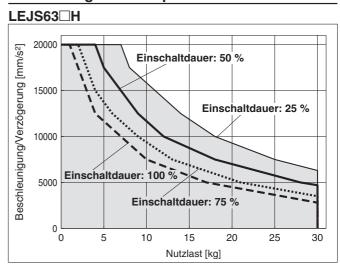
^{*} Diese Diagramme zeigen die Zykluszeit der jeweiligen Beschleunigung/Verzögerung.

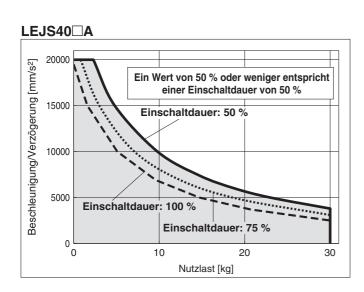
st Die Diagramme zeigen die Zykluszeit für den jeweiligen Hub bei max. Geschwindigkeit.

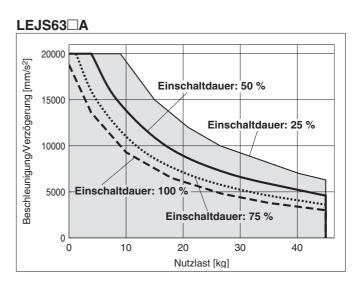
Nutzlast-Beschleunigungs-/Verzögerungs-Diagramm (Führung)

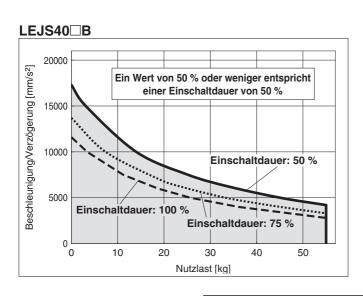
15

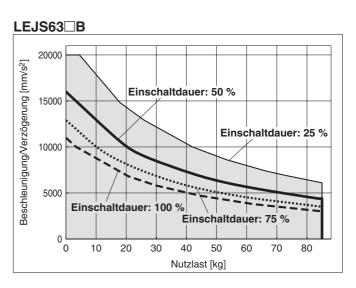
LEJS40/Kugelumlaufspindel: horizontal


Einschaltdauer: 100 %

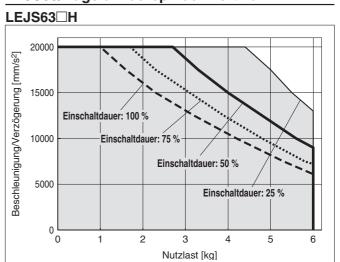

ົດ


LEJS40□H 20000 Beschleunigung/Verzögerung [mm/s²] Ein Wert von 50 % oder weniger entspricht einer Einschaltdauer von 50 % 15000 Einschaltdauer: 50 % 10000

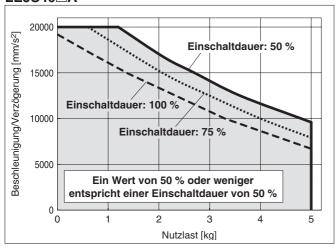

Nutzlast [kg]


LEJS63/Kugelumlaufspindel: horizontal

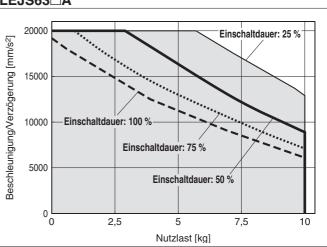
Diese Diagramme stellen ein Beispiel bei montiertem Standardmotor dar. Bestimmen Sie die Einschaltdauer unter Berücksichtigung des Lastfaktors des zu verwendenden Motors bzw. der zu verwendenden Endstufe.

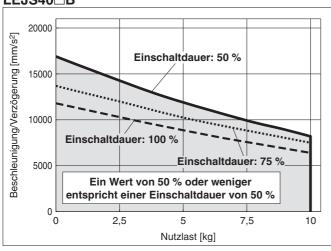


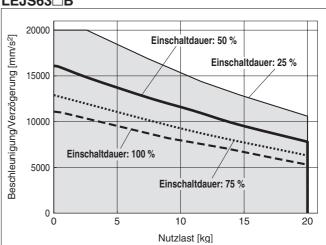
Nutzlast-Beschleunigungs-/Verzögerungs-Diagramm (Führung)


LEJS40/Kugelumlaufspindel: vertikal

LEJS40□H 20000 Beschleunigung/Verzögerung [mm/s²] Einschaltdauer: 50 % 15000 Einschaltdauer: 10000 Einschaltdauer: 75 % 5000 Ein Wert von 50 % oder weniger entspricht einer Einschaltdauer von 50 % n Nutzlast [kg]


LEJS63/Kugelumlaufspindel: vertikal


LEJS40□A


LEJS63□A

LEJS40□B

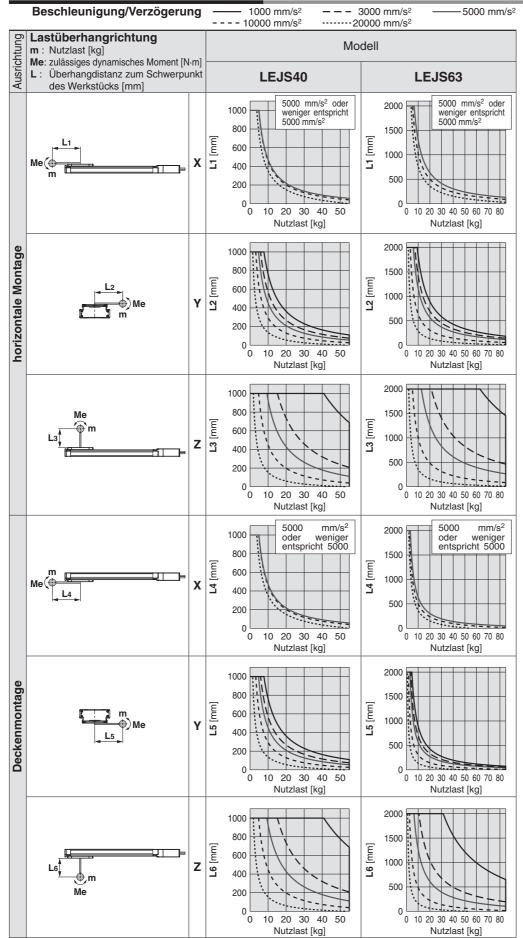
LEJS63□B

Diese Diagramme stellen ein Beispiel bei montiertem Standardmotor dar. Bestimmen Sie die Einschaltdauer unter Berücksichtigung des Lastfaktors des zu verwendenden Motors bzw. der zu verwendenden Endstufe.

Zulässige statische Moment*1

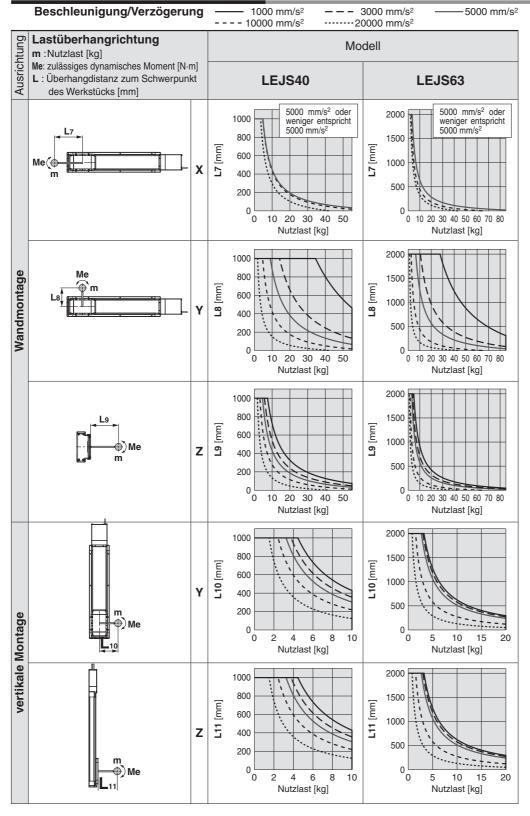
[N·m]

Modell	Größe	Längsbelastung	Querbelastung	Seitenbelastung
LEJS	40	83,9	88,2	88,2
LEJS	63	12,5	135,1	135,1


^{*1} Das zulässige statische Moment ist der Wert des statischen Moments, das auf den Antrieb einwirken kann, wenn er angehalten wird.

Wenn das Produkt Stößen oder wiederholten Lasten ausgesetzt wird, müssen Sie bei der Verwendung des Produkts angemessene Sicherheitsmaßnahmen ergreifen.

Zulässiges dynamisches Moment


* Diese Grafik zeigt den zulässigen Überhang (Führungseinheit), wenn der Lastschwerpunkt des Werkstücks einen Überhang in eine Richtung aufweist. Bestätigen Sie die Auswahl des Überhangs unter Berücksichtigung des Abschnitts "Berechnung des Lastfaktors der Führung" oder der Auswahlsoftware für elektrische Antriebe (http://www.smc.eu).

Zulässiges dynamisches Moment

* Diese Grafik zeigt den zulässigen Überhang (Führungseinheit), wenn der Lastschwerpunkt des Werkstücks einen Überhang in eine Richtung aufweist. Bestätigen Sie die Auswahl des Überhangs unter Berücksichtigung des Abschnitts "Berechnung des Lastfaktors der Führung" oder der Auswahlsoftware für elektrische Antriebe (http://www.smc.eu).

Berechnung des Belastungsgrads der Führung

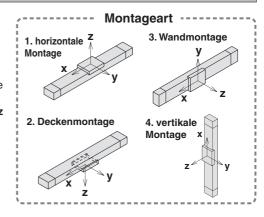
1. Bestimmen Sie die Betriebsbedingungen.

Modell: LEJS Größe: 40/63

Montageart: horizontale Montage/Wandmontage/ vertikale Montage/Deckenmontage Beschleunigung [mm/s²]: a

Nutzlast [kg]: m

Nutzlast-Mitte [mm]: Xc/Yc/Zc


- Wählen Sie das entsprechende Diagramm auf der Grundlage des Modells, der Größe und der Montageart aus.
- Ermitteln Sie basierend auf der Beschleunigung und Nutzlast den Überhang [mm]: Lx/Ly/Lz aus dem Diagramm.
- 4. Berechnen Sie den Lastfaktor für jede Richtung.

 $\alpha x = Xc/Lx$, $\alpha y = Yc/Ly$, $\alpha z = Zc/Lz$

5. Bestätigen Sie, dass der Gesamtwert von $\alpha \boldsymbol{x}, \, \alpha \boldsymbol{y}$ und $\alpha \boldsymbol{z}$ max. 1 beträgt.

 $\alpha \mathbf{x} + \alpha \mathbf{y} + \alpha \mathbf{z} \le \mathbf{1}$

Wenn 1 überschritten wird, ziehen Sie bitte die Verringerung der Beschleunigung und Nutzlast in Betracht oder ändern Sie die Nutzlast-Mitte und die Antriebsserie.

Beispiel

1. Betriebsbedingungen

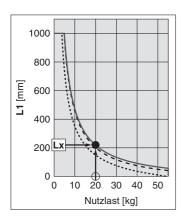
Modell: LEJS Größe: 40

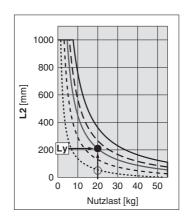
Montageart: horizontale Montage Beschleunigung [mm/s²]: 5000

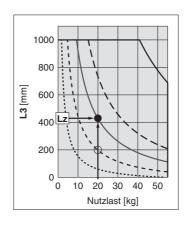
Nutzlast [kg]: 20

Nutzlast-Mitte [mm]: Xc = 0, Yc = 50, Zc = 200

2. Siehe Diagramm auf Seite 66, erste Zeile oben und links.

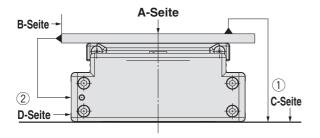

- 3. Lx = 220 mm, Ly = 210 mm, Lz = 430 mm
- 4. Der Lastfaktor für die einzelnen Richtungen wird wie folgt ermittelt.

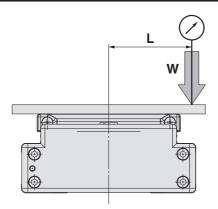

 $\alpha x = 0/220 = 0$

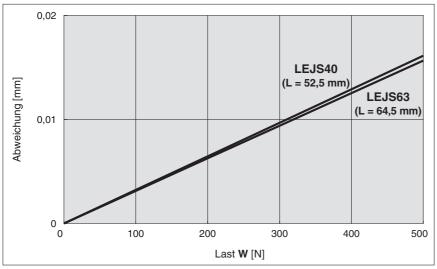

 α **y** = 50/210 = 0,24

 $\alpha z = 200/430 = 0.47$

5. $\alpha x + \alpha y + \alpha z = 0.71 \le 1$




Schlittengenauigkeit (Referenzwert)



	lineare Verfahrgenauigkeit [mm] (alle 300 mm)							
Modell	1 lineare Verfahrgenauig- keit C zu A	② lineare Verfahrgenauig- keit D zu B						
LEJS40	0,05	0,03						
LEJS63	0,05	0,03						

Anm.) Die lineare Verfahrgenauigkeit schließt nicht die Genauigkeit der Montagefläche ein.

Schlittenabweichung (Referenzwert)

Anm.) Diese Abweichung wird gemessen, wenn eine Aluminiumplatte von 15 mm auf dem Schlitten montiert und fixiert wird. (Schlitten-Freiraum inbegriffen)

Elektrischer Antrieb/Ausführung mit hoher Steifigkeit und Kugelumlaufführung Kugelumlaufspindel Serie LEJS LEJS40, 63 RoHS

Bestellschlüssel

Präzision

Grundausführung Präzisionsausführung

2 Größe 40

63

NY NX **NW***1 **NV***1 NU*1 NT*1

NZ

*1 Nur Größe 63

Montagetyp

Ste	Steigung [mm]											
Symbol	LEJS40	LEJS63										
Н	24	30										
Α	16	20										
В	8	10										

Hub [mm]

200	
bis	
1500	

Siehe unten stehende Tabelle für nähere Angaben.

Tabelle der anwendbaren Hübe

Tabelle der a	Tabelle der anwendbaren Hübe ●: Standard											
Hub Modell [mm]		300	400	500	600	700	800	900	1000	1200	1500	
LEJS40	•	•	•	•	•	•	•	•	•	•	_	
LEJS63	_	•	•	•		•	•	•	•	•	•	

Bitte setzen Sie sich für Hübe, die nicht Standard sind, mit SMC in Verbindung, da diese als Sonderbestellung gefertigt werden.

Für Signalgeber siehe Seiten 78 bis 80.

Kompatible Motoren und Montagetypen

verwendbares Me						Baugröße/	Montagetyp					
Hersteller	Serie		40		63							
Hersteller		NZ	NY	NX	NZ	NY	NX	NW	NV	NU	NT	
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	•	_	_	•	_	_	_	_	_	_	
YASKAWA Electric Corporation	Σ-V/7	● *1	_	_	•	_	_	_	_	_	-	
SANYO DENKI CO., LTD.	SANMOTION R	•	_	_	•	_	_	_	_	_	_	
OMRON Corporation	OMNUC G5/1S	•	_	_	_	•	_	_	_	_	_	
Panasonic Corporation	MINAS A5/A6	(nur MHMF)	•	_	_	•	_	_	_	_	_	
FANUC CORPORATION	βis (-B)	•	_	_	(nur β1)	_	_	•	_	_	_	
NIDEC SANKYO CORPORATION	S-FLAG	•	_	_	•	_	_	_	_	_	-	
KEYENCE CORPORATION	SV/SV2	●*1	_	_	•	_	_	_	_	_	_	
FUJI ELECTRIC CO., LTD.	ALPHA7	•	_	_	•	_	_	_	_	_	_	
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	(nur TL)	_	_	_	_	(nur MP/VP)	_	_	_	(nur TL)	
Beckhoff Automation GmbH	AM 30/31/80/81	•	_	_	_	_	(nur 80/81)	_	(nur 30)	(nur 31)	_	
Siemens AG	SIMOTICS S-1FK7	_	_	•	_	_	•	_	_	_	_	
Delta Electronics, Inc.	ASDA-A2	•	_	_	•	_	_	_	_	_	_	
ANCA Motion	AMD2000	•	_	_	•	_	_	_	_	_	_	

^{*1} Bei einigen Motoren kann der Anschluss aus dem Gehäuse herausragen. Prüfen Sie vor der Auswahl eines Motors, ob es zu Interferenzen mit der Montagefläche kommt.

Technische Daten

 Die nachstehenden Werte liegen innerhalb der Spezifikationsbereiche des Antriebsgehäuses bei montiertem Standardmotor und dürfen nicht überschritten werden.

	Modell				LEJS40		LEJS63					
	Hub [mm]*1	I		200, 30	0, 400, 500, 600, 7 900, 1000, 1200	700, 800	300, 40	0, 500, 600, 700, 8 1000, 1200, 1500	800, 900			
	Nutzlast [kg	• 1 *2	horizontal	15	30	55	30	45	85			
	INUIZIASI [KÇ	31	vertikal	3	5	10	6	10	20			
			bis 500	1800	1200	600						
			501 bis 600	1580	1050	520	1800	1200	600			
			601 bis 700	1170	780	390	1					
			701 bis 800	910	600	300	1390	930	460			
	0		801 bis 900	720	480	240	1110	740	370			
	Geschwindigkeit*3 [mm/s]	Hubberei	ch 901 bis 1000	580	390	190	900	600	300			
	[IIIII/5]		1001 bis 1100	480	320	160	750	500	250			
Q			1101 bis 1200	410	270	130	630	420	210			
ţ			1201 bis 1300	_	_	_	540	360	180			
Ā			1301 bis 1400	_	_	_	470	310	150			
teu	1401 bis 1500			_	_	_	410	270	130			
technische Daten Antrieb	max. Beschle	eunigung/V	erzögerung [mm/s ²]			20	000					
he	Positionier-		Grundausführung	±0,02								
isc	wiederholgen	auigkeit [m	m] Präzisionsausführung			±C	,01					
chn	Hysterese [mm]*4 Grundausführung Präzisionsausführung			max. 0,1								
ţ						max	. 0,05					
	Taabniaaba	Technische Daten Gewindegröße [mm]			Ø 12			Ø 15				
	Kugelumlau		Steigung [mm]	24 16		8	30	20	10			
			Wellenlänge [mm]		Hub + 118,5			Hub + 126,5				
	Stoß-/Vibration		it [m/s ²]*5	50/20								
	Funktionsw			Kugelumlaufspindel								
	Führungsar			Linearführung								
	Zulässige s		ep (Längsbelastung)		83,9		121,5					
	sche Mome		ey (Querbelastung)		88,2		135,1					
	[N·m]		er (Seitenbelastung)		88,2			135,1				
	Betriebsten	<u> </u>					s 40					
	Luftfeuchtiq					max. 90 (keine	Kondensation)					
nen			ngseinheit [kg]		0,86			1,37				
* sonstige 2 Spezifikationen	sonstige Tr		·cm ²]		0,031			0,129				
sonsti	Reibungsko		-				.05					
	mechanisch	ner Wirkur	ngsgrad				,8					
thnische Daten Motor (Referenz)	Motorausfü	hrung		AC-Servomotor (100 V/200 V)								
nnisch lotor (Nenn-Ausg		· · ·	100 200								
*8	Nenn-Drehr	noment [N	l·m]		0,32			0,64				
			liiba alia miaha Caamala		Nina Manufalina ali una ari al	a diana ala Cand						

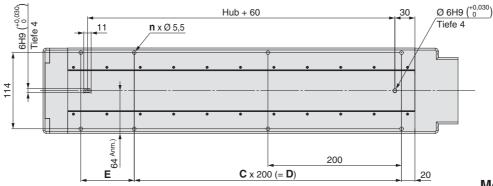
- *1 Bitte setzen Sie sich für Hübe, die nicht Standard sind, mit SMC in Verbindung, da diese als Sonderbestellung gefertigt werden.
- *2 Siehe "Geschwindigkeits-Nutzlast-Diagramm (Führung)" auf Seite 62
- *3 Die zulässige Geschwindigkeit ist je nach Hub unterschiedlich.
- *4 Richtwert zur Fehlerkorrektur im reziproken Betrieb.
- *5 Stoßfestigkeit: Keine Fehlfunktion im Fallversuch des Antriebs in axialer Richtung und rechtwinklig zur Antriebsspindel. (Der Versuch erfolgte mit dem Antrieb in der Startphase).

Vibrationsfestigkeit: Keine Fehlfunktionen im Versuch von 45 bis 2000 Hz. Der Versuch erfolgte in axialer Richtung und rechtwinklig zur Antriebsspindel. (Der Versuch erfolgte mit dem Antrieb in der Startphase)

- *6 Das zulässige statische Moment ist der Wert des statischen Moments, das auf den Antrieb einwirken kann, wenn steht.
- Wenn das Produkt Stößen oder wiederholten Lasten ausgesetzt wird, müssen Sie bei der Verwendung des Produkts angemessene Sicherheitsmaßnahmen ergreifen.
- *7 Bei den Werten handelt es sich um Richtwerte, die zur Auswahl der Motorleistung herangezogen werden können.
 *8 Weitere Spezifikationen finden Sie in den technischen Daten des Motors, der installiert werden soll.
- * Der Magnet zur Signalgebererkennung befindet sich in der Schlittenmitte.
- Detaillierte Abmessungen finden Sie im Abschnitt "Einbauposition des Signalgebers"

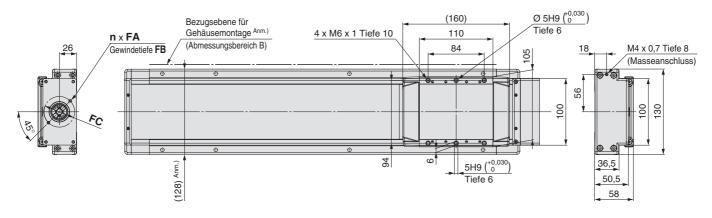
 Kollisionen an beiden Enden des Schlitten-Verfahrwegs verhindern.
- Beim Positionierbetrieb einen Abstand von min. 2 mm vor den beiden Enden einhalten.
- Setzen Sie sich für die Herstellung von Zwischenhüben mit SMC in Verbindung.
 - (LEJS40/herstellbarer Hubbereich: 200 bis 1200 mm, LEJS63/herstellbarer Hubbereich: 300 bis 1500 mm)

Gewicht

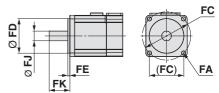

Modell		LEJS40											
Hub [mm]	200	300	400	500	600	700	800	900	1000	1200			
Gewicht [kg]	5,0	5,8	6,5	7,3	8,1	8,8	9,6	10,4	11,1	12,7			
Modell		LEJS63											
Hub [mm]	300	400	500	600	700	800	900	1000	1200	1500			
Gewicht [kg]	10,4	11,7	12,9	14,2	15,4	16,7	17,9	19,1	21,6	25,4			

Abmessungen: Kugelumlaufspindel

Siehe "Motormontage" auf Seite 75 für nähere Angaben zur Motormontage und zu den entsprechenden Teilen.


LEJS40

Montagetyp: NY LEJS40NY□-□



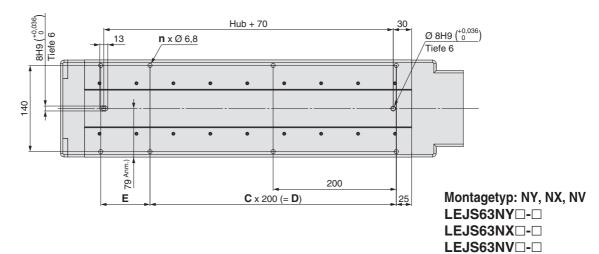
Anm.)Bei Montage des Antriebs unter Verwendung der Bezugsebene für Gehäusemontage. Stellen Sie die Höhe der gegenüberliegenden Fläche bzw. des Positionierstiftes auf min. 5 mm ein (empfohlene Höhe 6 mm).

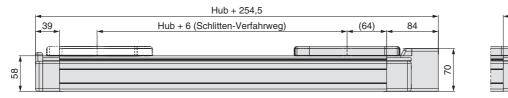
Anwendbare Abmessungen des Motors

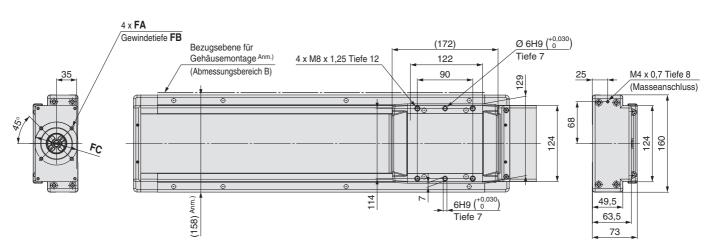
Abmessungen				[mm]
Modell	n	С	D	Е
LEJS□40N□□-200	6	1	200	80
LEJS□40N□□-300	6	1	200	180
LEJS□40N□□-400	8	2	400	80
LEJS□40N□□-500	8	2	400	180
LEJS□40N□□-600	10	3	600	80
LEJS□40N□□-700	10	3	600	180
LEJS□40N□□-800	12	4	800	80
LEJS□40N□□-900	12	4	800	180
LEJS□40N□□-1000	14	5	1000	80
LEJS□40N□□-1200	16	6	1200	80

Motorm	Motormontage, anwendbare Abmessungen des Motors [mm]											
		F	Α				FE					
Montagetyp	n	Montagetyp	Kompatible Motoren	FB	FC	FD	(max.)	FJ	FK			
NZ	2	M4 x 0,7	Ø 4,5	7	Ø 46	30	3,5	8	25 ±1			
NY	4	M3 x 0,5	Ø 3,4	6	Ø 45	30	3,5	8	25 ±1			
NX	2	M4 x 0,7	Ø 4,5	7	Ø 46	30	3,5	8	18 ±1			

84

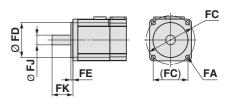

10


6


Abmessungen: Kugelumlaufspindel

Siehe "Motormontage" auf Seite 75 für nähere Angaben zur Motormontage und zu den entsprechenden Teilen.

LEJS63



Anwendbare Abmessungen des Motors

Anm.) Bei Montage des Antriebs unter Verwendung der Bezugsebene für Gehäusemontage. Stellen Sie die Höhe der gegenüberliegenden Fläche bzw. des Positionierstiftes auf min. 5 mm ein (empfohlene Höhe 6 mm).

Abmessungen				[mm]
Modell	n	С	D	Е
LEJS□63N□□-300	6	1	200	180
LEJS□63N□□-400	8	2	400	80
LEJS□63N□□-500	8	2	400	180
LEJS□63N□□-600	10	3	600	80
LEJS□63N□□-700	10	3	600	180
LEJS□63N□□-800	12	4	800	80
LEJS□63N□□-900	12	4	800	180
LEJS□63N□□-1000	14	5	1000	80
LEJS□63N□□-1200	16	6	1200	80
LEJS□63N□□-1500	18	7	1400	180

	F	A						
Montagetyp	Montagetyp	Kompatible Motoren	FB	FC	FD	FE (max.)	FJ	FK
NZ	M5 x 0,8	Ø 5,8	7	Ø 70	50	3,3	14	30 ±1
NY	M4 x 0,7	Ø 4,5	6	Ø 70	50	3,3	11	30 ±1
NX	M5 x 0,8	Ø 5,8	6	Ø 63	40	3,5	9	20 ±1
NW	M5 x 0,8	Ø 5,8	7	Ø 70	50	3,3	9	25 ±1
NV	M4 x 0,7	Ø 4,5	6	Ø 63	40	3,5	9	20 ±1
NU	M5 x 0,8	Ø 5,8	7	Ø 70	50	3,3	11	23 ±1
NT	M5 x 0,8	Ø 5,8	7	Ø 70	50	3,3	12	30 ±1

Ausführung mit eingebauter Spindelabstützung Diese Spezifikationen ermöglichen es, die maximale Geschwindigkeit über die gesamte Hublänge zu erreichen.

Elektrischer Antrieb/Ausführung mit hoher Steifigkeit und Kugelumlaufführung Kugelumlaufspindel

Serie LEJS63 - M

RoHS

Bestellschlüssel

Präzision

T Tuziolott							
_	Grundausführung						
Н	Präzisionsausführung						

3	M ontagetyp

NZ
NY
NX
NW
NV
NU
NT

4 Spindelsteigung [mm]					
Н	30				
Α	20				
В	10				

•	Hub	[mm]*	1	Standa	ard OFertigun	g auf Bestellunç
	790	890	990	1190	1490	1790
	•	•	0	0	0	0

*1 Bitte setzen Sie sich für Hübe, die nicht Standard sind, mit SMC in Verbindung, da diese als Sonderbestellung gefertigt werden.

6 Spindelabstützung

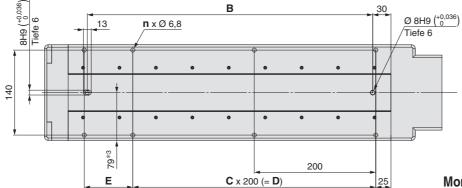
M	ingebaute Spindelabstützung
---	-----------------------------

Technische Daten

Spin	30	20	10		
Geschwindigkeit [mm/s]		790			
		890			
	Hubbereich	990	1800	1200	600
	nubbereich	1190	1600	1200	600
		1490			
		1790			

Informationen zur Typenauswahl finden Sie auf Seite 61. Alle nicht genannten technischen Daten entsprechen denen des Standardproduktes. Siehe Seite 72 für Details.

Für Signalgeber siehe Seiten 78 bis 80.

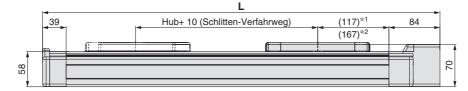

Kompatible Motoren und Montagetypen

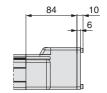
verwendbares M	otormodell	Baugröße/Montagetyp							
Llouotellou		63							
Hersteller	Serie	NZ	NY	NX	NW	NV	NU	NT	
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	•	_	_	_	_	_	_	
YASKAWA Electric Corporation	Σ-V/7	● *1	_	_	_	_	_	_	
SANYO DENKI CO., LTD.	SANMOTION R	•	_	_	_	_	_	_	
OMRON Corporation	OMNUC G5/1S	1	•	_	_	_	_	_	
Panasonic Corporation	MINAS A5/A6	_	•	_	_	_	_	_	
FANUC CORPORATION	βis (-B)	(nur β1)	_	_	•	_	_	_	
NIDEC SANKYO CORPORATION	S-FLAG	•	_	_	_	_	_	_	
KEYENCE CORPORATION	SV/SV2	● *1	_	_	_	_	_	_	
FUJI ELECTRIC CO., LTD.	ALPHA7	•	_	_	_	_	_	_	
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	-	_	(nur MP/VP)	_	_	_	(nur TL)	
Beckhoff Automation GmbH	AM 30/31/80/81	_	_	(nur 80/81)	_	(nur 30)	(nur 31)	_	
Siemens AG	SIMOTICS S-1FK7	_	_	•	_	_	_	_	
Delta Electronics, Inc.	ASDA-A2	•	_	_	_	_	_	_	
ANCA Motion	AMD2000	•	_	_	_	_	_	_	

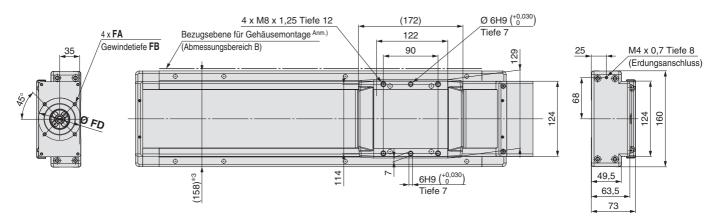
^{*1} Bei einigen Motoren kann der Anschluss aus dem Gehäuse herausragen. Prüfen Sie vor der Auswahl eines Motors, ob es zu Interferenzen mit der Montagefläche kommt.

Abmessungen: Kugelumlaufspindel

LEJS63-M

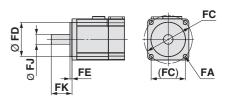



- *1 Oberer Wert: Hub 790 bis 1190 mm
- *2 Unterer Wert: Hub 1490 bis 1790 mm


Montagetyp: NY, NX, NV LEJS63NY□-□

LEJS63NX --

LEJS63NV□-□



*3 Bei Montage des Antriebs unter Verwendung der Bezugsebene für Gehäusemontage einen Zylinderstift verwenden. Aufgrund der Profilausführung muss die Stiftlänge min. 5 mm betragen (empfohlene Höhe 6 mm).

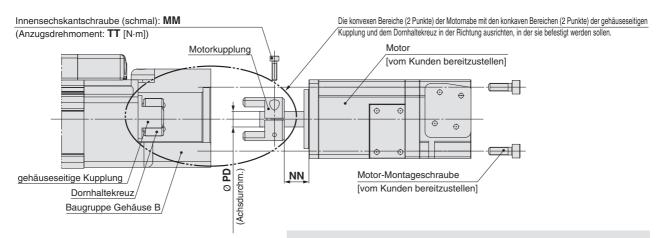
Anwendbare Abmessungen des Motors

⚠ Achtung

- 1. Während des Betriebs verursacht die Spindelabstützung konstruktionsbedingt Geräusche.
- 2. Im Vergleich zum Standardprodukt ist bei dieser Ausführung die gesamte Länge je Hub größer. Für nähere Angaben siehe Abmessungen.
- 3. Die Methode der Referenzierung auf Anschlag kann nicht verwendet werden (aufgrund des verwendeten elastischen Dämpfers, wie in Abbildung ④ gezeigt).

Abmessungen und Gewicht

Abmessungen und Gewicht [mm								
Modell	L	В	n	С	D	E	Gewicht [kg]	
LEJS□63N□□-790M	1154,5	970	12	4	800	180	18,4	
LEJS□63N□□-890M	1254,5	1070	14	5	1000	80	19,7	
LEJS□63N□□-990M	1354,5	1170	14	5	1000	180	20,9	
LEJS□63N□□-1190M	1554,5	1370	16	6	1200	180	23,4	
LEJS□63N□□-1490M	1954,5	1770	20	8	1600	180	28,9	
LEJS□63N□□-1790M	2254,5	2070	24	10	2000	80	32,7	


Motormontage, anwendbare Abmessungen des Motors [mm]

	<u> </u>							
	FA							
Montagetyp	Montagetyp	Kompatible Motoren	FB	FC	FD	FE (max.)	FJ	FK
NZ	M5 x 0,8	Ø 5,8	7	Ø 70	50	3,3	14	30 ±1
NY	M4 x 0,7	Ø 4,5	6	Ø 70	50	3,3	11	30 ±1
NX	M5 x 0,8	Ø 5,8	6	Ø 63	40	3,5	9	20 ±1
NW	M5 x 0,8	Ø 5,8	7	Ø 70	50	3,3	9	25 ±1
NV	M4 x 0,7	Ø 4,5	6	Ø 63	40	3,5	9	20 ±1
NU	M5 x 0,8	Ø 5,8	7	Ø 70	50	3,3	11	23 ±1
NT	M5 x 0,8	Ø 5,8	7	Ø 70	50	3,3	12	30 ±1

Motormontage

- Bei Montage einer Kupplung, Öl, Staub oder Verschmutzungen vollständig aus der Welle und dem Innenbereich der Kupplung entfernen.
- Das Produkt beinhaltet weder den Motor noch die Motor-Montageschrauben (vom Kunden bereitzustellen). Die Form der Motor-Antriebswelle muss eben und rund sein und darf keine Keilnut haben.
- Entsprechende Maßnahmen ergreifen, um zu verhindern, dass sich die Motor-Montageschrauben lösen.

Anm.) Alle Teile sind inbegriffen, außer der Hinweis "(vom Kunden bereitzustellen)" wird angegeben.

Montage

- 1) Den Motor (vom Kunden bereitzustellen) und die "Motorkupplung" mit der "MM-Innensechskantschraube" festziehen.
- 2) Die "Position der Motorkupplung" prüfen und einschieben.
- 3) Den Motor und die "Gehäuse-Baugruppe B" mit den Motor-Montageschrauben (vom Kunden bereitzustellen) befestigen.

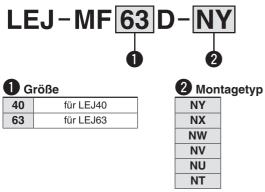
Abme	ssungen				[mm]
Größe	Montagetyp	MM	TT	NN	PD
	NZ	M2,5 x 10	0,65	12,5	8
40	NY	M2,5 x 10	0,65	12,5	8
	NX	M2,5 x 10	0,65	7	8
	NZ	M3 x 12	1,5	18	14
	NY	M4 x 12	2,7	18	11
	NX	M4 x 12	2,7	8	9
63	NW	M4 x 12	2,7	12	9
	NV	M4 x 12	2,7	8	9
	NU	M4 x 12	2,7	12	11
	NT	M3 x 12	1,5	18	12

Stückliste

Größe: 40

Beschreibung	Anzahl	Anm.
Motorkupplung	1	_
Innensechskantschraube (zur Befestigung der Kupplung)	1	M2,5 x 10: Montagetyp "NZ", "NY", "NX"

Größe: 63


Beschreibung	Anzahl	Anm.
Motorkupplung	1	_
Innensechskantschraube (zur Befestigung der Kupplung)		M3 x 12: Montagetyp "NZ", "NT"
Zylinderschraube mit Innensechskant und niedrigem Kopf (zur Befestigung der Kupplung)	1	M4 x 12: Montagetyp "NY", "NX", "NW", "NV", "NU"

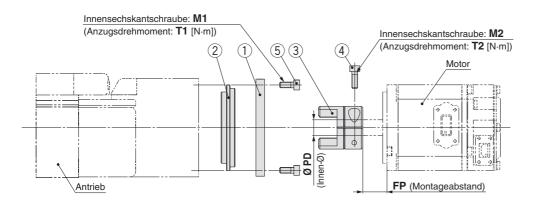
Serie LEJS Teile für die Motormontage

Motorflansch-Option

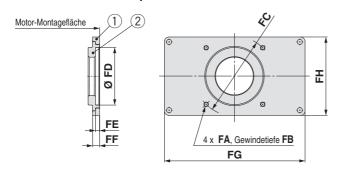
Da für das Modell die Montagetyp "NZ" gewählt und diese Option montiert ist, sind die verwendbaren Montagetyp unten aufgeführt.

Bestellschlüssel

^{*} Die Stückliste ist je nach Motorausführung unterschiedlich. Siehe "Stückliste" auf Seite 77.


Kompatible Motoren und Montagetypen

verwendbares M	otormodell					Baugröße/	Montagetyp				
Havatallav	O a wile		40		63						
Hersteller	Serie	NZ	NY	NX	NZ	NY	NX	NW	NV	NU	NT
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	•	_	_	•	_	_	_	_	_	_
YASKAWA Electric Corporation	Σ-V/7	● *1	_	_	•	_	_	_	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	•	_	_	•	_	_	_	_	_	_
OMRON Corporation	OMNUC G5/1S	•	_	_	_	•	_	_	_	_	_
Panasonic Corporation	MINAS A5/A6	(nur MHMF)	•	_	_	•	_	_	_	_	_
FANUC CORPORATION	βis (-B)	•	_	_	(nur β1)	_	_	•	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	•	_	_	•	_	_	_	_	_	_
KEYENCE CORPORATION	SV/SV2	● *1	_	_	•	_	_	_	_	_	_
FUJI ELECTRIC CO., LTD.	ALPHA7	•	_	_	•	_	_	_	_	_	_
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	(nur TL)	_	_	_	_	(nur MP/VP)	_	_	_	(nur TL)
Beckhoff Automation GmbH	AM 30/31/80/81	•	_	_	_	_	(nur 80/81)	_	(nur 30)	(nur 31)	_
Siemens AG	SIMOTICS S-1FK7	_	_	•	_	_	•	_	_	_	_
Delta Electronics, Inc.	ASDA-A2	•	_	_	•	_	_	_	_	_	_
ANCA Motion	AMD2000	•	_	_	•	_	_	_	_	_	_


^{*1} Bei einigen Motoren kann der Anschluss aus dem Gehäuse herausragen. Prüfen Sie vor der Auswahl eines Motors, ob es zu Interferenzen mit der Montagefläche kommt.

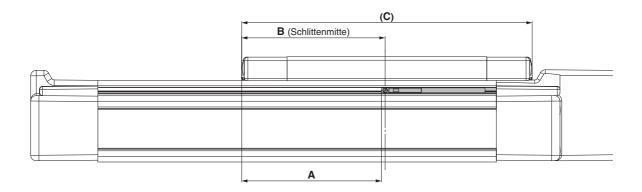
Abmessungen: Motorflansch-Option

Details Motorplatte

ssungen							[mm]

, (DIIIO	tomocounger.														[]
Größe	Montagetyp	FA	FB	FC	FD	FE	FF	FG	FH	M1	T1	M2	T2	PD	FP
40	NY	M3 x 0,5	6	Ø 45	30	3,5	6	99	49	M4 x 12	2,7	M2,5 x 10	0,65	8	12,5
40	NX	_	_	_	_	_	_	_	_	_	_	M2,5 x 10	0,65	8	7
	NY	M4 x 0,7	6	Ø 70	50	3,5	6	123	68	M4 x 12	2,7	M4 x 12	2,7	11	18
	NX	M5 x 0,8	6	Ø 63	40	3,5	6	123	68	M4 x 12	2,7	M4 x 12	2,7	9	8
63	NW	_	_	_	_	_	_	_	_	_	_	M4 x 12	2,7	9	12
03	NV	M4 x 0,7	6	Ø 63	40	3,5	6	123	68	M4 x 12	2,7	M4 x 12	2,7	9	8
	NU	_	_	_	_	_	_	_	_	_	_	M4 x 12	2,7	11	12
	NT	_		_	_		_	_	_	_	_	M3 x 12	1,5	12	18

Stückliste


Große: 40										
		Anz	zahl							
Pos.	Beschreibung	Monta	getyp							
		NY	NX							
1	Motorplatte	1	_							
2	Ring	1	_							
3	Kupplung (motorseitig)	1	1							
4	Zylinderschraube mit Innensechskant und niedrigem Kopf	1	1							
5	Innensechskantschraube	4	_							

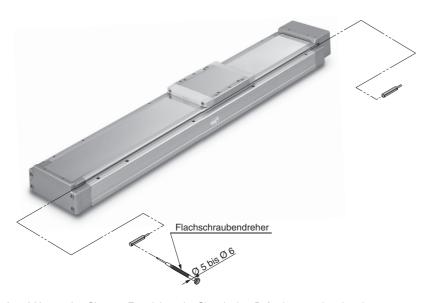
Größe: 63

			Anzahl								
Pos.	Beschreibung		Montagetyp								
		NY	NX	NW	NV	NU	NT				
1	Motorplatte	1	1	_	1	_	_				
2	Ring	1	1	_	1	_	_				
3	Kupplung (motorseitig)	1	1	1	1	1	1				
4	Zylinderschraube mit Innensechskant und niedrigem Kopf	1	1	1	1	1	1				
5	Innensechskantschraube	4	4	_	4	_	_				

Serie LEJS Signalgebermontage

Einbauposition des Signalgebers

					[mm]
Modell	Größe	Α	В	С	Betriebsbereich
LEJS	40	77	80	160	5,5
	63	83	86	172	7,0


Anm.) Die Werte mit Hysterese sind nur Richtwerte; sie sind keine Garantie. (Streuung etwa ±30 %).

Je nach Umgebungsbedingungen sind große Schwankungen möglich.

Signalgebermontage

Beim Einbau der Signalgeber sollten diese in Signalgebernuten des Antriebs eingesetzt werden, wie in der Abb. unten dargestellt. Richten Sie ihn in der korrekten Einbauposition aus und ziehen Sie mit Hilfe eines Feinschraubendrehers die beiliegende Befestigungsschraube an.

Signalgeber-Befestigungsschraube									
Anzugsdrehmomen	t [N⋅m]								
Signalgebermodell	Anzugsdrehmoment								
D-M9□(V) D-M9□W(V)	0,10 bis 0,15								

Anm.) Verwenden Sie zum Festziehen der Signalgeber-Befestigungsschraube einen Feinschraubendreher mit einem Griffdurchmesser von ca. 5 bis 6 mm.

Elektronischer Signalgeber Direktmontage

D-M9N(V)/D-M9P(V)/D-M9B(V) **(€**

Eingegossene Kabel

- 2-Draht-Ausführung mit reduziertem max. Strom (2,5 bis 40 mA).
- Standardmäßig mit Flexikabel.

△Achtung

Sicherheitshinweise

Befestigen Sie den Signalgeber mit der am Signalgebergehäuse angebrachten Schraube. Wird eine andere als die mitgelieferte Schraube benutzt, kann der Signalgeber beschädigt werden.

Technische Daten Signalgeber

Weitere Details zu Produkten, die internationalen Standards entsprechen, finden Sie auf der Webseite von SMC.

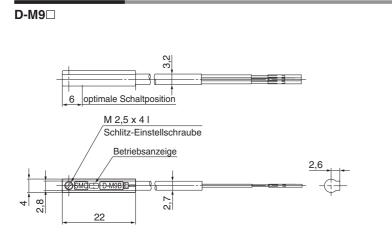
SPS: speicherprogrammierbare Steuerung

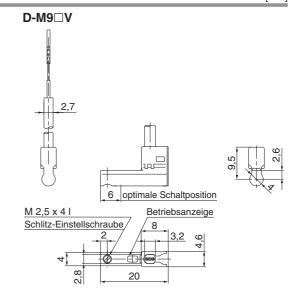
D-M9□, D-M9□V (mit Betriebsanzeige)										
Signalgebermodell	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV				
elektrischer Eingang	axial	senkrecht	axial	senkrecht	axial	senkrecht				
Verdrahtung		3-D		2-Draht						
Ausgangsart	NF	NPN PNP				_				
zulässige Last	I	C-Steuerung	3	24 V DC Relais, SPS						
Versorgungsspannung	5	_	_							
Stromaufnahme		max.	10 mA		_					
Betriebsspannung	max. 2	8 V DC	_	_	24 V DC (10 bis 28 V DC)					
Betriebsstrom		max. 4	10 mA		2,5 bis 40 mA					
interner Spannungsabfall	max. 0,8	V bei 10 mA	(max. 2 V be	ei 40 mA)	max	. 4 V				
Kriechstrom		max. 100 μA	max. 0,8 mA							
Betriebsanzeige			ON: rote LE	D leuchtet.						
Standards			CE-Kennzei	chen, RoHS						

Technische Daten des ölbeständigen Anschlusskabels

Signalge	ebermodell	D-M9N(V)	D-M9P(V)	D-M9B(V)			
Kabelmantel	Außen-Ø [mm]						
Isolierung	Anzahl der Adern	3-Draht (braun/blau/schwarz) 2-Draht (braun/blau/schwarz)					
Isolierung	Außen-Ø [mm]	0,88					
Leiter	Effektiver Querschnitt [mm ²]	0,15					
	Litzen-Ø [mm]	0,05					
kleinster Biegerad	ius [mm] (Richtwert)	17					

Anm. 1) Im Leitfaden für Signalgeber finden Sie die allgemeinen technischen Daten für elektronische Signalgeber.


Anm. 2) Siehe Leitfaden für Signalgeber für Angaben zur Anschlusskabellänge.


Gewicht

[g]

Signalgebermodell		D-M9N(V)	D-M9P(V)	D-M9B(V)		
	0,5 m ()		7			
Anachlusekahallänge	1 m (M)	1	13			
Anschlusskabellänge 3 m (L)		4	41			
	5 m (Z)	6	63			

Abmessungen [mm]

Elektronischer Signalgeber mit 2-farbiger Anzeige Direktmontage

D-M9NW(V)/D-M9PW(V)/D-M9BW(V) \subset \in

Eingegossene Kabel

- 2-Draht-Ausführung mit reduziertem max. Strom (2,5 bis 40 mA).
- Standardmäßig mit Flexikabel.
- Die optimale Schaltposition kann anhand der Farbe der leuchtenden LED bestimmt werden. (rot → grün ← rot)

Sicherheitshinweise

Befestigen Sie den Signalgeber mit der am Signalgebergehäuse angebrachten Schraube. Wird eine andere als die mitgelieferte Schraube benutzt, kann der Signalgeber beschädigt werden.

Technische Daten Signalgeber

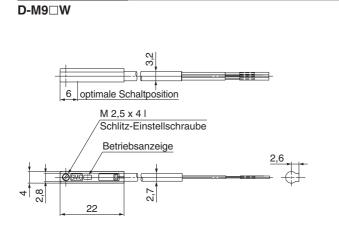
Weitere Details zu Produkten, die internationalen Standards entsprechen, finden Sie auf der Webseite von SMC.

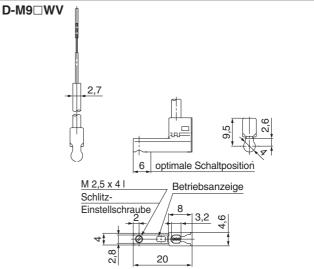
SPS: speicherprogrammierbare Steuerung

D-M9□W, D-M9□WV (mit Betriebsanzeige)						
Signalgebermodell	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
elektrischer Eingang	axial	senkrecht	axial	senkrecht	axial	senkrecht
Verdrahtung	3-Draht			2-Draht		
Ausgangsart	NPN PNP		_			
zulässige Last	IC-Steuerung, Relais, SPS			24 V DC Relais, SPS		
Versorgungsspannung	5, 12, 24 V DC (4,5 bis 28 V)			_		
Stromaufnahme	max. 10 mA			_		
Betriebsspannung	max. 2	8 V DC	_		24 V DC (10 bis 28 V DC)	
Betriebsstrom	max. 40 mA			2,5 bis 40 mA		
interner Spannungsabfall	max. 0,8 V bei 10 mA (max. 2 V bei 40 mA)			max. 4 V		
Kriechstrom	max. 100 μA bei 24 V DC			max. 0,8 mA		
Betriebsanzeige	Betriebsbereich ·········· rote LED leuchtet. optimaler Schaltbereich ······· grüne LED leuchtet.					
Standards	CE-Kennzeichen, RoHS					

Technische Daten des flexiblen ölbeständigen Anschlusskabels

Signalgebermodell		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Kabelmantel	Außen-Ø [mm]	2,6		
leoliorupa	Anzahl der Adern	3-Draht (braun/blau/schwarz)		2-Draht (braun/blau)
Isolierung	Außen-Ø [mm]	0,88		
Leiter	Effektiver Querschnitt [mm²]		0,15	
	Litzen-Ø [mm]	0,05		
kleinster Biegeradius [mm] (Richtwert)		17		


Anm. 1) Im Leitfaden für Signalgeber finden Sie die allgemeinen technischen Daten für elektronische Signalgeber.


Anm. 2) Siehe Leitfaden für Signalgeber für Angaben zur Anschlusskabellänge.

Gewicht [9]

Signalgebermodell		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
0,5 m ()		8		7
Anschlusskabellänge	1 m (M)	1	13	
	3 m (L)	41		38
	5 m (Z)	6	88	63

Abmessungen [mm]

Serie LEJS Elektrischer Antrieb Produktspezifische Sicherheitshinweise 1

Vor der Inbetriebnahme durchlesen. Siehe Umschlagseite für Sicherheitshinweise. Für Sicherheitshinweise für elektrische Antriebe siehe "Sicherheitshinweise zur Handhabung von SMC-Produkten" und die Bedienungsanleitung auf der SMC-Webseite, http://www.smc.eu

Design

⚠ Achtung

1. Keine Last anwenden, die die Spezifikationsgrenzwerte übersteigt.

Wählen Sie einen geeigneten Antrieb in Relation zu der Nutzlast und dem zulässigen Moment aus. Bei einem Betrieb außerhalb der Spezifikationsgrenzwerte wirkt eine übermäßige exzentrische Last auf die Führung, was zu einem vermehrten Spiel der gleitenden Teile der Führung, Genauigkeitsverlust und einer verkürzten Lebensdauer des Produkts führt.

 Verwenden Sie das Produkt nicht für Anwendungen, in denen es übermäßigen externen Kräften oder Stößen ausgesetzt ist.

Das Produkt kann beschädigt werden.

Die Komponenten (einschließlich des Motors) sind innerhalb genauer Toleranzgrenzen gefertigt, so dass bereits eine leichte Verformung Funktionsstörungen oder ein Festfahren verursachen kann.

Auswahl

△ Warnung

1. Keine Geschwindigkeit anwenden, die die Spezifikationsgrenzen übersteigt.

Einen geeigneten Antrieb in Relation zu der zulässigen Nutzlast und der Geschwindigkeit sowie der jeweils zulässigen Hubgeschwindigkeit auswählen. Der Betrieb außerhalb der Spezifikationsgrenzen kann negative Auswirkungen haben, wie Geräuschentwicklung, Genauigkeitsverlust und eine verkürzte Produktlebensdauer.

- Bei wiederholten Zyklen mit Teilhüben (100 mm oder weniger) kann die Schmierung auslaufen. Das Produkt mindestens einmal pro Tag oder alle 1000 Zyklen mit einer vollen Hubbewegung betreiben.
- Wenn der Schlitten einer externen Krafteinwirkung ausgesetzt ist, muss die Bemessung des Antriebs unter Berücksichtigung der gesamten Nutzlast einschließlich der externen Krafteinwirkung erfolgen.

Wenn Kabelführungen oder bewegliche Schläuche am Antrieb angebracht sind, kann der Gleitwiderstand des Schlittens erhöht werden, was zu einem Betriebsausfall des Produkts führen kann.

Handhabung

Achtung

1. Den Schlitten nicht auf das Hubende aufprallen lassen.

Bei einer falschen Einstellung der Parameter, der Ausgangsposition oder der Programmierung der Endstufe kann der Schlitten während des Betriebs auf das Hubende des Antriebs aufprallen. Diese Punkte vor der Verwendung prüfen.

Wenn der Schlitten auf das Hubende des Antriebs aufprallt, kann die Führung, die Kugelumlaufspindel, der Riemen oder der interne Anschlag beschädigt werden. Dies kann einen fehlerhaften Betrieb zur Folge haben.

Achten Sie bei Verwendung in vertikaler Richtung darauf, den Antrieb vorsichtig zu handhaben, da das Werkstück aufgrund seines Eigengewichts herabfallen kann.

2. Die Ist-Geschwindigkeit dieses Antriebs wird durch die Nutzlast und den Hub beeinflusst.

Prüfen Sie die Spezifikationen unter Berücksichtigung der Vorgehensweise bei der Modellauswahl in diesem Katalog.

- Während der Rückkehr zur Ausgangsposition keine Last, Stoßeinwirkungen oder Widerstand zusätzlich zur transportierten Last zulassen.
- Das Gehäuse und die Schlittenmontageflächen dürfen nicht verbeult, zerkratzt oder anderweitig beschädigt werden.

Dies kann die Montagefläche uneben machen sowie Spiel in der Führung oder einen erhöhten Gleitwiderstand zur Folge haben.

Beim Produkt- bzw. Werkstückanbau dürfen keine hohen Stoßkräfte oder übermäßige Momente wirken.

Eine externe Kraft, die das zulässige Moment überschreitet, führt zu Führungsspiel oder zu einem erhöhten Gleitwiderstand.

Die Ebenheit der Montagefläche darf max. 0,1 mm abweichen.

Ungenügende Ebenheit des Werkstücks oder der Oberfläche, an die das Produkt montiert werden soll, kann ein Führungsspiel und einen erhöhten Gleitwiderstand erzeugen. Im Falle einer Montage mit Überhang (einschl. freitragende Montage) eine Stützplatte oder -führung verwenden, um die Durchbiegung des Antriebsgehäuses zu verhindern.

7. Bei der Montage des Antriebs alle Befestigungsbohrungen verwenden.

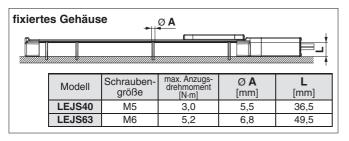
Werden nicht alle Befestigungsbohrungen verwendet, werden die technischen Daten beeinflusst, z. B. der Verschiebungswert des Schlittens steigt an.

- 8. Während der Positionieranwendung und im Positionierbereich das Werkstück nicht auf den Schlitten aufprallen lassen.
- **9. Keine äußeren Kräfte auf das Staubschutzband anwenden.**Dies gilt insbesondere während des Transports.

\triangle

Serie LEJS Elektrischer Antrieb Produktspezifische Sicherhe

Produktspezifische Sicherheitshinweise 2
Vor der Inbetriebnahme durchlesen. Siehe Umschlagseite für Sicherheitshinweise. Für


Vor der Inbetriebnahme durchlesen. Siehe Umschlagseite für Sicherheitshinweise. Für Sicherheitshinweise für elektrische Antriebe siehe "Sicherheitshinweise zur Handhabung von SMC-Produkten" und die Bedienungsanleitung auf der SMC-Webseite, http://www.smc.

Handhabung

⚠ Achtung

 Verwenden Sie für die Montage des Produkts Schrauben mit der passenden Länge und ziehen Sie diese mit dem korrekten Anzugsdrehmoment fest.

Größere Anzugsdrehmomente können Fehlfunktionen verursachen, während sich bei einem zu niedrigen Anzugsdrehmoment die Einbaulage verändern und unter extremen Bedingungen das Werkstück herunterfallen kann.

fixiertes Werkstück					
	Modell	Schrauben- größe	max. Anzugs- drehmoment [N⋅m]	L (max. Einschraub- tiefe) [mm]	
	LEJS40	M6 x 1	5,2	10	
	LEJS63	M8 x 1,25	12,5	12	

Verwenden Sie Schrauben, die min. 0,5 mm kürzer als die max. Einschraubtiefe sind, um einen Kontakt der Werkstück-Befestigungsschrauben mit dem Gehäuse zu vermeiden. Zu lange Schrauben könnten auf das Gehäuse stoßen und Fehlfunktionen o. Ä. verursachen.

- 11. Nicht mit fixiertem Schlitten und durch Bewegen des Antriebsgehäuses in Betrieb nehmen.
- 12. Wenn Sie den Antrieb unter Verwendung der Bezugsebene für Gehäusemontage montieren, stellen Sie die Höhe der gegenüberliegenden Fläche bzw. des Positionierstiftes auf min. 5 mm ein (empfohlene Höhe 6 mm).

Wartung

⚠ Warnung

Wartungsintervall

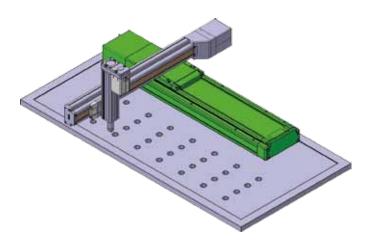
Führen Sie die Wartung entsprechend der nachstehenden Tabelle durch.

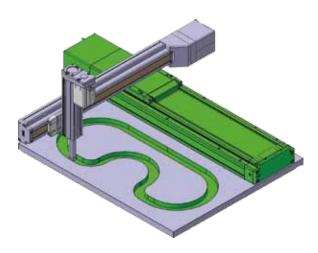
Frequenz	Sichtprüfung	interne Prüfung
Inspektion vor der täglichen Inbetriebnahme	0	_
Inspektion alle 6 Monate/1000 km/5 Mio. Zyklen*	0	0

* Wählen Sie jeweils den Punkt aus, der am frühesten anwendbar ist.

• Punkte für die Sichtprüfung

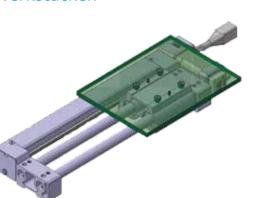
- 1. Lose Einstellschrauben, abnormale Verschmutzung
- 2. Überprüfung auf Beschädigungen und der Kabelverbindung
- 3. Vibration, elektromagnetische Störsignale

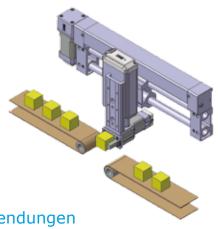

• Punkte für die interne Prüfung


- 1. Zustand der Schmierung der beweglichen Teile.
 - * Zur Schmierung Lithiumfett Nr. 2 verwenden.
- 2. Loser Zustand oder mechanisches Spiel bei festen Elementen oder Befestigungsschrauben.

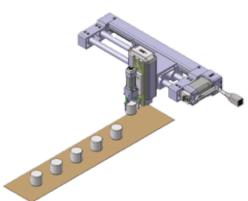
Montagemöglichkeiten

Pick-and-Place-Anwendungen





Anwendungsbeispiele


Lade- undEntladetransfer von Werkstücken

Anwendungen mit begrenztem Platz

Pick-and-Place-Anwendungen

